工程爆破

2016, v.22(05) 18-23

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

爆破振动信号的局部波分解方法
LMD method using in blasting vibration signal analysis

徐振洋;陈占扬;郭连军;于妍宁;
XU Zhen-yang;CHEN Zhan-yang;GUO Lian-jun;YU Yan-ning;College of Mining Engineering,University of Science and Technology Liaoning;State Key Laboratory of Explosion Science and Technology,School of Mechatronical Engineering,Beijing Institute of Technology;

摘要(Abstract):

针对爆破振动信号具有非线性、随机性较强的特点,提出利用局部波分解(Local Mean Decomposition,LMD)处理并分析爆破振动信号。结合露天铁矿逐孔起爆方式下爆破振动测试信号分析,研究信号的时频及能量分布特征。结果表明:LMD方法能完整地分解重构爆破信号,有效减少模态混叠现象,更加真实反映信号的原始信息;相比经验模态分解方法(Empirical Mode Decomposition,EMD)、LMID方法的端点效应轻微,具有较高的解凋精度;LMID方法可以精确分析振动能量的分布规律,有利于进一步识别爆破本身的力学作用特征。
According to the characteristic of higher randomness and larger interference of blasting vibration signal,blasting vibration signal was analyzed using Local Mean Decomposition(LMD) method.The signal amplitude frequency and energy distribution feature were investigated in detail combined with Open-pit Iron Mine of hole by hole blasting vibration testing signal.The results illustrated that LMD had an accurate reconstruction effect on the characteristic of blasting signal time and frequency,and it could reflect the complete information of original signal.Especially,compared with the Empirical Mode Decomposition(EMD),the LMD could apparently reduce the end effect of blasting vibration signal in the transformation,which improved the demodulation accuracy effectively.Meanwhile,analyzing the signal vibration energy distribution in frequency bands could further identify the characteristics of blasting to guide the blasting production preferably.

关键词(KeyWords): 爆破振动;爆炸力学;信号分析;局部波分解;能量
Blasting vibration;Explosion mechanics;Signal analysis;LMD;Energy

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金资助项目(51504129)

作者(Authors): 徐振洋;陈占扬;郭连军;于妍宁;
XU Zhen-yang;CHEN Zhan-yang;GUO Lian-jun;YU Yan-ning;College of Mining Engineering,University of Science and Technology Liaoning;State Key Laboratory of Explosion Science and Technology,School of Mechatronical Engineering,Beijing Institute of Technology;

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享