工程爆破

2023, v.29;No.132(02) 129-136

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于3D-UNet的多谱图像融合定位方法
Multi-spectral image fusion positioning method based on 3D-UNet

赵飞飞,邵亚璐,刘晓佳,闫昕蕾,韩焱
ZHAO Fei-fei,SHAO Ya-lu,LIU Xiao-jia,YAN Xin-lei,HAN Yan

摘要(Abstract):

针对地下浅层地层结构复杂、地面获取的爆炸波振动信号波形混叠、频散严重,采用逆时偏移方法震源成像模糊、震源定位精度低的问题,将图像融合引入震源定位中,提出了一种基于3D-UNet的多谱图像融合定位方法。首先,对传感器采集到的信号通过变分模态分解(VMD)进行多频主成分分解,通过逆时聚焦成像方法形成多谱能量场;之后,将多谱能量场作为3D-UNet的输入,并结合注意力机制进行多谱能量场对应系数的自适应调整,通过梯度下降法使网络输出最大值位置逼近真实震源位置,生成融合网络模型。实验验证表明,本文方法相比于基于VMD多谱图像融合定位方法定位精度更高,且均方根误差在0.5 m以内。
In view of the complex structure of the shallow underground stratum, the aliasing and serious dispersion of the blast wave vibration signal obtained from the ground, using inverse time migration method to cause the problems of fuzzy seismic source imaging and low seismic location accuracy, this paper introduces image fusion into the source location, and proposes 3D-UNet-based multispectral image fusion positioning method. First, the signal collected by the sensor is decomposed into multi-frequency principal component through Variational Modal Decomposition(VMD), and then the multi-spectral energy field is formed through the reverse time focusing imaging method; After that, the multi-spectral energy field as the input of 3D-UNet, combined with the attention mechanism to adaptively adjust the coefficients of the multi-spectral energy field, so that the maximum position of the network output is continuously approaching the true focal position through the gradient descent method, and finally get the converged network model. Experimental verification shows that the method in this paper can achieve higher positioning accuracy than the multispectral image fusion positioning method based on VMD, and the root mean square error is within 0.5 m.

关键词(KeyWords): 图像融合;3D-UNet;震源定位;VMD
image fusion;3D-UNet;vibration source location;VMD

Abstract:

Keywords:

基金项目(Foundation): 国家自然基金青年科学基金资助项目(61901419)

作者(Author): 赵飞飞,邵亚璐,刘晓佳,闫昕蕾,韩焱
ZHAO Fei-fei,SHAO Ya-lu,LIU Xiao-jia,YAN Xin-lei,HAN Yan

DOI: 10.19931/j.EB.20210397

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享