动载下胶结充填体的力学特性试验研究Experimental study on mechanical properties of cemented backfill under dynamic loading
韩亮;刘健修;
HAN Liang;LIU Jian-xiu;China Society of Explosives and Blasting;
摘要(Abstract):
胶结充填体的稳定性对于矿山安全生产至关重要。为了研究动载作用下充填体的动力学特性,利用霍普金森压杆(SHPB)对充填体进行单轴冲击试验,研究充填体应力应变曲线、动态抗压强度、动态强度增长因子与平均应变率之间的关系。结果表明,当平均应变率低于60 s(-1)时,应力应变曲线峰后阶段为"应变回弹"类型;超过80 s(-1)时,应力应变曲线峰后阶段为"应变回弹"类型;超过80 s(-1)时,为"峰后塑性"类型;介于二者之间时,为"应力跌落"类型;随着平均应变率的增大,试样动态抗压强度先迅速增大,后趋于稳定,对应的平均应变率临界值为80 s(-1)时,为"峰后塑性"类型;介于二者之间时,为"应力跌落"类型;随着平均应变率的增大,试样动态抗压强度先迅速增大,后趋于稳定,对应的平均应变率临界值为80 s(-1)。利用Gompertz模型能较好的描述充填体动态抗压强度与平均应变率之间的关系;动态强度增长因子与平均应变率正相关,当平均应变率处于40~130 s(-1)。利用Gompertz模型能较好的描述充填体动态抗压强度与平均应变率之间的关系;动态强度增长因子与平均应变率正相关,当平均应变率处于40~130 s(-1),动态强度增长因子范围在1.5~3之间。
The stability of cemented backfill is very important to the safe production of the mine. In order to study the dynamic characteristics of the filling material under dynamic load, the Split Hopkinson Pressure Bar(SHPB) is used to perform the uniaxial impact test on it, and the relationship between the average strain rate and the stress-strain curve of the filling material, the dynamic compressive strength, or the dynamic strength increase factor respectively is studied. The results show that the post-peak stress-strain curve is the type of "strain rebound" when the average strain rate is lower than 60 s(-1),动态强度增长因子范围在1.5~3之间。
The stability of cemented backfill is very important to the safe production of the mine. In order to study the dynamic characteristics of the filling material under dynamic load, the Split Hopkinson Pressure Bar(SHPB) is used to perform the uniaxial impact test on it, and the relationship between the average strain rate and the stress-strain curve of the filling material, the dynamic compressive strength, or the dynamic strength increase factor respectively is studied. The results show that the post-peak stress-strain curve is the type of "strain rebound" when the average strain rate is lower than 60 s(-1), it is the type of "post-peak plasticity" when the average strain rate exceeds 80 s(-1), it is the type of "post-peak plasticity" when the average strain rate exceeds 80 s(-1), and it is the type of "stress drop" when the average strain rate is between 60 s(-1), and it is the type of "stress drop" when the average strain rate is between 60 s(-1) to 80 s(-1) to 80 s(-1). With the increase of the average strain rate, the dynamic compressive strength of the specimen increases rapidly firstly and then tends to be stable, and the critical value of strain rate is 80 s(-1). With the increase of the average strain rate, the dynamic compressive strength of the specimen increases rapidly firstly and then tends to be stable, and the critical value of strain rate is 80 s(-1). The Gompertz model could well describe the relationship between the dynamic compressive strength and the average strain rate of the backfill. When the average strain rate is between 40 s(-1). The Gompertz model could well describe the relationship between the dynamic compressive strength and the average strain rate of the backfill. When the average strain rate is between 40 s(-1) to 130 s(-1) to 130 s(-1), the dynamic strength growth factor is between 1.5 to 3.
关键词(KeyWords):
胶结充填体;霍普金森压杆;平均应变率;动态强度
cemented backfill;Split Hopkinson Pressure Bar;average strain rate;dynamic strength
基金项目(Foundation): 国家自然科学基金资助项目(51974318)
作者(Authors):
韩亮;刘健修;
HAN Liang;LIU Jian-xiu;China Society of Explosives and Blasting;
DOI: 10.19931/j.EB.20200260
参考文献(References):
- [1] YILMAZ E,BELEM T,BENZAAZOUA M.Effects of curing and stress conditions on hydromechanical,geotechnical and geochemical properties of cemented paste backfill[J].Engineering.Geology.2014,168:23-37.
- [2] 吴爱祥,王勇,王洪江.膏体充填技术现状及趋势[J].金属矿山,2016(7):1-9.WU A X,WANG Y,WANG H J.Status and prospects of the paste backfill technology [J].Metal Mine,2016(7):1-9.
- [3] LIU Z X,LAN M,XIAO S Y,et al.Damage failure of cemented backfill and its reasonable match with rock mass[J].Transactions of Nonferrous Metals Society of China.2015(25):954-959.
- [4] 徐文彬,宋卫东,王东旭,等.胶结充填体三轴压缩变形破坏及能量耗散特征分析[J].岩土力学,2014,35(12):3 421-3 429.XU W B,SONG W D,WANG D X,et al.Characteristic analysis of deformation failure and energy dissipation of cemented backfill body under triaxial compression[J].Rock and Soil Mechanics,2014,35(12):3 421-3 429.
- [5] 杨阳,王建国,方士正,等.霍普金森撞击杆对入射波形影响的数值模拟[J].工程爆破,2020,26(1):7-14,35.YANG Y ,WANG J G,FANG S Z,et al.Numerical simulation on the influence of incident wave shape by Hopkinson Striker Bar[J].Engineering Blasting,2020,26(1):7-14,35.
- [6] 刘锦,李峰辉,刘秀秀.基于HJC模型的煤岩冲击损伤特性研究[J].工程爆破,2021,27(2):35-42,65.LIU J ,LI F H ,LIU X X.Study on impact damage characteristics of coal-rock based on HJC model[J].Engineering Blasting,2021,27(2):35-42,65.
- [7] CHOCRON S,CIRNE J,DORMEVAL R,et al.Apache leap tuff rock:High strain rate characterization and support simulations[J].Journal De Physique IV,2006,134:565-570.
- [8] FREW D J,FORRESTAL M J,CHEN W.Pulse shaping techniques for testing brittle materials with a split Hopkinson Pressure Bar[J].Experimental Mechanics,2002,42(l):93-106.
- [9] 许金余,刘石.加载速率对高温后大理岩动态力学性能的影响研究[J].岩土工程学报,2013,35(5):879-883.XU J Y,LIU S.Effect of impact velocity on dynamic mechanical behaviors of marble after high temperatures[J].Chinese Journal of Geotechnical Engineering,2013,35(5):879-883.
- [10] 刘石,许金余,白二雷,等.基于分形理论的岩石冲击破坏研究[J].振动与冲击,2013,32(5):163-166.LIU S,XU J Y,BAI E L,et al.Research on impact fracture of rock based on fractal theory[J].Journal of Vibration and Shock,2013,32(5):163-166.
- [11] 李夕兵,王世鸣,宫凤强,等.不同龄期混凝土多次冲击损伤特性试验研究[J].岩石力学与工程学报,2012,31(12):2 465-2 472.LI X B,WANG S M,GONG F Q,et al.Experimental study of damage properties of different ages concrete under multiple impact loads[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(12):2 465-2 472.
- [12] LI X B,WANG S M,WENG L,et al.Damage constitutive model of different age concretes under impact load[J].Journal of Central South University,2015,22(2):693-700.
- [13] FALL M,CELESTIN J,POKHAREL M,et al.A contribution to understanding the effects of curing temperature on the mechanical properties of mine cemented tailings backfill[J].Engineering Geology,2010,114:397-413.
- [14] 杨伟,张钦礼,杨珊,等.动载下高浓度全尾砂胶结充填体的力学特性[J].中南大学学报(自然科学版),2017,48(1):156-161.YANG W,ZHANG Q L,YANG S,et al.Mechanical property of high concentration total tailing cemented backfilling under dynamic loading[J].Journal of Central South University (Science and technology) ,2017,48(1):156-161.
- [15] 朱鹏瑞,宋卫东,徐琳慧,等.冲击荷载作用下胶结充填体的力学特性研究[J].振动与冲击,2018,37(12):131-137,166.ZHU P R,SONG W D,XU L H,et al.A study on mechanical properties of cemented backfills under impact compressive loading[J].Journal of Vibration and Shock,2018,37(12):131-137,166.
- [16] 施劲松,许金余,任韦波,等.高温后混凝土冲击破碎能耗及分形特征研究[J].兵工学报,2014,35(5):703-710.SHI J S,XU J Y,REN W B,et al.Research on energy dissipation and fractal characteristics of concrete after exposure to elevated temperatures under impact loading[J].Acta Armamentarii,2014,35(5):703-710.
- [17] 李地元,成腾蛟,周韬,等.冲击载荷作用下含孔洞大理岩动态力学破坏特性试验研究[J].岩石力学与工程学报,2015,34(2):249-260.LI D Y,CHENG T J,ZHOU T,et al.Experimental study of the dynamic strength and fracturing characteristics of marble specimens with a single hole under impact loading [J].Chinese Journal of Rock Mechanics and Engineering,2015,34(2):249-260.
- [18] 刘德克.单轴冲击及一维动静组合加载下红砂岩力学特性研究[D].昆明:昆明理工大学,2015.LIU D K.Mechanical property of red sandstone under uniaxial impact compressive and coupled static and dynamic loads[D].Kunming:Kunming University of Science and Technology,2015.