工程爆破

2009, v.15;No.v.15(03) 28-30

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于支持向量机回归爆破振动速度预测分析
ANALYSIS OF THE PPV PREDICTION OF BLASTING VIBRATION BASED ON SUPPORT VECTOR MACHINE REGRESSION

史秀志,董凯程,邱贤阳,陈小康
SHI Xiu-zhi,DONG Kai-cheng,QIU Xian-yang,CHEN Xiao-kang(School of Resources and Safety Engineering

摘要(Abstract):

运用支持向量机回归(SVMR)预测理论,对爆破振动质点振动速度进行预测,并与实测数据进行对比分析。通过与RBF神经网络、传统预测方法进行对比分析,运用支持向量机回归理论预测方法能较好地预测爆破振动速度,对研究爆破振动特征及灾害控制具有一定意义。
This article predicted the PPV of blasting vibration and contrasted the results with the measured data based on support vector machine regression(SVMR) prediction theory.With the comparative analysis between the RBF neural network and traditional prediction method,the fact that the method based on support vector machine regression theory could make a better prediction of the PPV of blasting vibration and reduce prediction inaccuracy was revealed,showing the significance of the study of blasting vibration characteristics and the control of disasters caused by blasting.

关键词(KeyWords): 支持向量机回归;质点振速峰值;预测
Supportive Vector Machine Regression(SVMR);Peak Particle Velocity(PPV);Prediction

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 史秀志,董凯程,邱贤阳,陈小康
SHI Xiu-zhi,DONG Kai-cheng,QIU Xian-yang,CHEN Xiao-kang(School of Resources and Safety Engineering

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享