工程爆破

2023, v.29;No.131(01) 48-54

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

考虑密集系数的台阶松动爆破振动速度预测模型
Vibration velocity prediction model of bench loosening blasting considering dense coefficient

李晋,陶铁军,雷振,谢财进,田兴朝,何军
LI Jin,TAO Tie-jun,LEI Zhen,XIE Cai-jin,TIAN Xing-chao,HE Jun

摘要(Abstract):

为提高台阶松动爆破振动峰值速度的预测精度,减少由爆破振动引起的次生灾害事故,通过分析两种具有代表性的爆破振动峰值速度预测模型存在的不足,利用能量守恒定律分析了密集系数对爆破振动速度衰减的影响,基于量纲理论推导出考虑密集系数的多元非线性爆破振动速度预测模型,并结合具体实际工程,对监测数据进行非线性回归分析。结果表明:考虑密集系数的爆破振动速度预测模型相较于两种经典预测模型其预测精度提高了9.99%和4.16%,具有更高的预测精度,同时可为爆破工程设计提供指导,达到防控振动灾害的目的,为类似工程提供参考与借鉴。
In order to improve the prediction accuracy of the peak velocity of bench loose blasting vibration and reduce the secondary disaster accidents caused by blasting vibration, the shortcomings of two representative models for predicting peak velocity of blasting vibration were analyzed. The influence of density coefficient on the attenuation of blasting vibration velocity was analyzed by using the law of conservation of energy. Based on the dimensional theory, a multivariate nonlinear prediction model of blasting vibration velocity considering dense coefficient is derived. The nonlinear regression analysis of the monitoring data is carried out combined with the actual project. The results show that the prediction accuracy of the blasting vibration velocity prediction model considering the dense coefficient is 9.99% and 4.16% higher than that of the two classical prediction models, and has higher prediction accuracy. At the same time, it can provide guidance for blasting engineering design, achieve the purpose of preventing and controlling vibration disasters, and provide reference for similar projects.

关键词(KeyWords): 爆破振动;松动爆破;密集系数;量纲分析
blasting vibration;loosening blasting;dense coefficient;dimensional analysis

Abstract:

Keywords:

基金项目(Foundation): 国家自然科学基金资助项目(52064008);; 贵州省高层次创新型人才资助项目(黔科合平台人才-GCC[2022]004-1);; 贵州省科技厅科技支撑计划资助项目(黔科合支撑[2020]2Y036)

作者(Author): 李晋,陶铁军,雷振,谢财进,田兴朝,何军
LI Jin,TAO Tie-jun,LEI Zhen,XIE Cai-jin,TIAN Xing-chao,HE Jun

DOI: 10.19931/j.EB.20220076

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享