工程爆破

2023, v.29;No.132(02) 120-128

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于KS-GS-SVR的峰值爆破振速预测
Prediction of peak blasting vibration velocity based on KS-GS-SVR

费鸿禄,左壮壮,蒋安俊,包世杰
FEI Hong-lu,ZUO Zhuang-zhuang,JIANG An-jun,BAO Shi-jie

摘要(Abstract):

为了保证爆破作业时周围建筑物的稳定,需要提高对峰值爆破振动速度预测的准确性。运用Kennard-Stone算法优化训练样本,采用网络搜索算法获得支持向量回归机的最优惩罚系数和核函数参数,构建KS-GS-SVR的峰值爆破振速预测模型。结合湖北铜录山现场露天台阶爆破的振速实测数据,选取影响爆破振动速度的8个主要因素作为模型的输入变量,运用KS-GS-SVR模型进行峰值振速预测,并将KS-GS-SVR模型预测结果分别与GS-SVR、KS-GA-BP、KS-萨氏公式模型预测结果对比分析。结果表明,相比于GS-SVR的预测结果,KS-GS-SVR模型预测结果的平均相对误差降低了4.31%,说明Kennard-Stone算法通过优化训练样本提高了预测精度。KS-GS-SVR模型预测结果的平均相对误差为12.17%,明显低于其他模型,说明KS-GS-SVR模型学习和泛化能力更强,预测精度更高。所构建的预测模型可供类似工程爆破振速峰值预测借鉴。
In order to ensure the stability of surrounding buildings during blasting operations, it is necessary to improve the accuracy of the prediction of peak blasting vibration velocity. The Kennard-Stone algorithm is used to optimize the training samples, and the network search algorithm is used to obtain the optimal penalty coefficient and kernel function parameters of the support vector regression machine, and the KS-GS-SVR peak blasting vibration velocity prediction model is constructed. Based on the measured data of vibration velocity of open-air bench blasting at Tonglushan site in Hubei, eight main factors affecting blasting vibration velocity are selected as the input variables of the model, and the KS-GS-SVR model is used to predict the peak vibration velocity, and KS-GS-SVR model prediction results of are compared with those of GS-SVR, KS-GA-BP, and KS-Sachs formula model respectively. The results show that compared with the prediction results of GS-SVR, the average relative error of the prediction results of the KS-GS-SVR model is reduced by 4.31%, indicating that the Kennard-Stone algorithm improves the prediction accuracy by optimizing the training samples. The average relative error of the prediction results of the KS-GS-SVR model is 12.17%, which is significantly lower than other models, indicating that the KS-GS-SVR model has stronger learning and generalization capabilities and higher prediction accuracy. The constructed prediction model can be used as a reference for the prediction of peak blasting vibration velocity in similar projects.

关键词(KeyWords): 峰值爆破振速;网格搜索;支持向量机;预测
peak blasting vibration velocity;grid search;support vector machine;prediction

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 费鸿禄,左壮壮,蒋安俊,包世杰
FEI Hong-lu,ZUO Zhuang-zhuang,JIANG An-jun,BAO Shi-jie

DOI: 10.19931/j.EB.20210389

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享