基于爆破振动的岩质边坡损伤神经网络预测Prediction of blast-induced damage depth for rock slope based on monitored vibration and neural network model
邹玉君;严鹏;卢文波;陈明;王高辉;
ZOU Yu-jun;YAN Peng;LU Wen-bo;CHEN Ming;WANG Gao-hui;State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University;Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering Ministry of Education,Wuhan University;
摘要(Abstract):
岩石高边坡的爆破开挖会对保留岩体造成损伤,岩体损伤过大可能导致边坡失稳,需严格控制并准确确定开挖损伤深度,因此,提出一种快速精确的损伤深度预测方法。以白鹤滩水电站左岸834.0770.0 m高程坝肩槽边坡爆破开挖为背景,利用六个开挖梯段的多高程、多爆心距爆破振动监测及损伤深度声波检测的数据,建立基于振动峰值的爆破损伤深度BP神经网络预测模型,对高边坡爆破损伤深度进行实时预测。该方法利用不同部位及不同爆心处的质点峰值振动峰值作为主回归变量,同时还考虑最大单响药量和岩体强度的影响。结果表明,当开挖区域坡体岩性相似且无长大软弱结构面发育时,运用神经网络模型及多高程实测爆破振动预测本梯段爆破损伤深度的方法简便可行,预测精度可满足实际工程需求。作为传统爆破损伤声波检测的补充,可大大减轻现场声波测试工作量。
The blasting excavation of high rock slope in large-scale hydropower projects leads to damages on the reserved rock mass.Such damages may cause slope failure,so the blast-induced damage depth should be strictly controlled and precisely determined and it is urgently needed to find an efficient and accurate method to determine damage depth.During blasting excavation of the left bank slope between altitude of 834.0 m and 770.0 m of the Bai-he-tan Hydropower Station,the vibration caused by the first to the sixth bench blasting are monitored at different points and the blasting damage depths are also obtained by sonic wave testing.Then the BP artificial neural network model is established for real-time prediction of damage depth based on monitored vibration.This method takes the vibration at different distances and altitudes to the blast center as main regression variable,and the maximum explosives per delay and rock mass strength are also considered.The result indicates that if the lithology of each bench were similar and there were no large structural planes existing,the method that applying BP artificial neural network model presented with monitored vibration is convenient and feasible.The prediction accuracy of damage depth can meet the requirement of practical project,and the method for supplementury will significantly reduce massive traditional sonic wave testing workload.
关键词(KeyWords):
岩石高边坡;爆破振动;BP神经网络;爆破损伤;实时预测
High rock slope;Blasting vibration;BP neural network;Blasting damage;Real-time prediction
基金项目(Foundation): 国家自然科学基金杰出青年基金项目(51125037);国家自然科学基金面上项目(51179138)
作者(Authors):
邹玉君;严鹏;卢文波;陈明;王高辉;
ZOU Yu-jun;YAN Peng;LU Wen-bo;CHEN Ming;WANG Gao-hui;State Key Laboratory of Water Resources and Hydropower Engineering Science,Wuhan University;Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering Ministry of Education,Wuhan University;
参考文献(References):
- [1]李海波,蒋会军,赵坚,等.动荷载作用下岩体工程安全的几个问题[J].岩石力学与工程学报,2003,22(11):1 887-1 891.LI Hai-bo,JIANG Hui-jun,ZHAO Jian,et al.Some problems about safety analysis of rock engineering under dynamic load[J].Chinese Journal of Geotechnical Engineering,2003,22(11):1 887-1 891.
- [2]闫长斌.爆破作用下岩体累积损伤效应及其稳定性研究[D].长沙:中南大学,2006.YAN Chang-bin.Study on cumulative damage effects and stability of rock mass under blasting loading[DJ.Changsha:Central South University,2006.
- [3]周创兵.水电工程高陡边坡全生命周期安全控制研究综述[J].岩石力学与工程学报,2013,32(6):1 081-1 093.ZHOU Chuang-bing.A prospect of researches on life-cycle safety control on high-steep rock slopes in hydropower engineering[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(6):1 081-1 093.
- [4]DL/T5389-2007水工建筑物岩石基础开挖工程施工技术规范[S].北京:中国电力出版社,2007.DL/T5389-2007 Construction technical specifications on rock foundation excavating engineering of hydraulic structures[S].Beijing:China Electric Power Press,2007.
- [5]HOLMBERG R,PERSSON P A.The Swedish approach to contour blasting[C]//Proceedings of the 4th conference on explosive and blasting technique.ISEE,1978:113-127.
- [6]HUSTRULID W.Blasting principles for open pit mining:general design concepts[M].New York:A A Balkema Publishers,1999:64-67.
- [7]卢文波,HUSTRULID W.临近岩石边坡开挖轮廓面的爆破设计方法[J].岩石力学与工程学报,2003,22(12):2 052-2 056.LU Wen-bo,HUSTRULID W.Design approach for excavation blasting near contour of rock slope[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(12):2 052-2 056.
- [8]谢冰,李海波,刘亚群,等.宁德核电站核岛基坑爆破开挖安全控制研究[J].岩石力学与工程学报,2009,28(8):1 571-1 578.XIE Bing,LI Hai-bo,LIU Ya-qun,et al.Study of safety control of foundation pit excavation by blasting in ningde nuclear power plant[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(8):1 571-1 578.
- [9]唐海,李海波,周青春,等.预裂爆破震动效应试验研究[J].岩石力学与工程学报,2010,29(11):2 277-2 285.TANG Hai,LI Hai-bo,ZHOU Qing-chun,et al.Experimental study of vibration effect of presplit blasting[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(11):2 277-2 285.
- [10]夏祥.爆炸荷载作用下岩体损伤特征及安全阈值研究[D].武汉:中国科学院武汉岩土力学研究所,2006.XIA Xiang.Study of damage characteristics and safety threshold of rock vibration by blast[D].Wuhan-.Institute of Rock and Soil Mechanics,Chinese Academy of Sciences,2006.
- [11]LI H B,XIA X,LI J C,et al.Rock damage control in bedrock blasting excavation for a nuclear power plant[J].International Journal of Rock Mechanics and Mining Sciences,2011,48(2):210-218.
- [12]BAUER A,CALDER P N.Open pit and blast seminar[R].Kingston:Mining Engineering Department,Queens University,1978.
- [13]SAVELY J P.Designing a final blast to improve stability[C]//Proceedings of the SME Annual Meeting.New Orleans;[s.n.],1986:80-86.
- [14]MOJITABAI N,BEATTI S G.Empirical approach to prediction of damage in bench blasting[J].Transactions of the Institution of Mining and Metallurgy:Section A,1996,10(5):75-80.
- [15]严鹏,邹玉君,卢文波,等.基于爆破振动监测的岩石边坡开挖损伤区预测[J].岩石力学与工程学报,2016,35(3):538-548.YAN Peng,ZOU Yu-jun,LU Wen-bo,et al.Predicting the damage zone of rock slope under blasting excavation based on vibration monitoring[J].Chinese Journal of Rock Mechanics and Engineering,2016,35(3):538-548.
- [16]李守巨,刘迎曦,何翔,等.基于人工神经网络的爆炸冲击荷载参数识别方法[J].岩石力学与工程学报,2003,22(11):1 870-1 873.LI Shou-ju,LIU Ying-xi,HE Xiang,et al.Identification with artificial neural network of load parameters from underground explosion[J].Chinese Journal of Rock Mechanics and Engineering,2003,22(11):1 870-1 873.
- [17]唐海,石永强.李海波,等.基于神经网络的爆破振动速度峰值预报[J].岩石力学与工程学报,2007,26(S1):3 533-3 539.TANG Hai,SHI Yong-qiang,LI Hai-bo,et al.Prediction of peak velocity of blasting vibration based on neural network[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(S1):3 533-3 539.
- [18]汪学清,单仁亮.人工神经网络在爆破块度预测中的应用研究[J].岩土力学.2008,29(S1):529-532.WANG Xue-qing,SHAN Ren-liang.Application of artificial neural networks to blasting fragment prediction[J].Rock and Soil Mechanics,2008,29(S1):529-532.
- [19]胡英国,卢文波,陈明,等.不同开挖方式下岩石高边坡损伤演化过程比较[J].岩石力学与工程学报,2013,32(6):1 1761 184.HU Ying-guo,LU Wen-bo,CHEN Ming,et al.Comparison of damage evolution process of high rock slope excavated by different methods[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(6):1 176-1 184.
- [20]BADAL R.Controlled blasting in jointed rocks[J].International Journal of Rock Mechanics and Mining Sciences,1994,31(1):79-84.
- [21]SOEJIMA M.Analysis of the influence of crack in coke on the fracture[J].Journal of the Iron and Steel Institute of Japan,2001,87(5):245-251.
- [22]邹奕芳.预裂缝和减震槽减震效果的爆破试验研究[J].爆破,2005,22(2):96-99.ZOU Yi-fang.Experimental study on the vibration-isolating effect of pre-split crack and vibration-isolating slot[J].Blasting,2005,22(2):96-99.
- [23]MOHAMED M T.Performance of fuzzy logic and artificial neural network in prediction of ground and air vibrations[J].International Journal of Rock Mechanics and Mining Sciences,2011,48(5):845-851.
- 岩石高边坡
- 爆破振动
- BP神经网络
- 爆破损伤
- 实时预测
High rock slope - Blasting vibration
- BP neural network
- Blasting damage
- Real-time prediction
- 邹玉君
- 严鹏
- 卢文波
- 陈明
- 王高辉
ZOU Yu-jun- YAN Peng
- LU Wen-bo
- CHEN Ming
- WANG Gao-hui
- State Key Laboratory of Water Resources and Hydropower Engineering Science
- Wuhan University
- Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering Ministry of Education
- Wuhan University
- 邹玉君
- 严鹏
- 卢文波
- 陈明
- 王高辉
ZOU Yu-jun- YAN Peng
- LU Wen-bo
- CHEN Ming
- WANG Gao-hui
- State Key Laboratory of Water Resources and Hydropower Engineering Science
- Wuhan University
- Key Laboratory of Rock Mechanics in Hydraulic Structural Engineering Ministry of Education
- Wuhan University