工程爆破

2023, v.29;No.132(02) 137-144

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于机器学习的爆破工程智能教学系统与实践
Intelligent teaching system and practice of blasting engineering based on machine learning

马鑫民,杨国梁,刘伟,杨立云
MA Xin-min,YANG Guo-liang,LIU Wei,YANG Li-yun

摘要(Abstract):

为克服爆破工程教学实践性强、安全标准高的局限性,开展爆破工程决策系统的研究与构建,采用多源知识融合技术建立了爆破工程综合数据库。运用机器学习和计算机技术开发了爆破工程智能决策系统,设计了关键指标输入、方案推理、爆破图表自动生成等3个模块,实现不同地质条件下的爆破方案的智能设计和工程图表的自动绘制。以直观、仿真的形式,帮助学生清楚地了解爆破工程设计的原理,掌握影响爆破方案设计的关键因素,爆破工程图表绘制标准等,提高了学生的计算机辅助综合应用能力与自主创新意识,改善了教学效果。
To overcome the limitations of teaching blasting engineering with its high practicality and safety standards, research and construction of a decision system for blasting engineering were carried out. A comprehensive database of blasting engineering was established using multi-source knowledge fusion technology. The intelligent decision-making system for blasting engineering was developed by using machine learning and computer technology, and three modules were designed for key index input, scheme reasoning, and automatic generation of blasting diagrams to realize the intelligent design of blasting schemes and mechanical drawing of engineering diagrams under different geological conditions. It is more intuitive and simulated to help students understand the principles of blasting engineering design, master the key factors affecting the design of blasting solutions and standards for drawing blasting engineering diagrams. It improves the students' comprehensive computer application ability and sense of independent innovation, enhancing the teaching effect.

关键词(KeyWords): 机器学习;爆破工程;教学系统;实践
machine learning;blasting engineering;teaching and learning system;practice

Abstract:

Keywords:

基金项目(Foundation): 中国矿业大学(北京)教改基金资助项目(J210604、J20ZD20、J200701)

作者(Author): 马鑫民,杨国梁,刘伟,杨立云
MA Xin-min,YANG Guo-liang,LIU Wei,YANG Li-yun

DOI: 10.19931/j.EB.20220264

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享