TiNi合金/Q235钢爆炸复合界面微观结构特性及其演化Microstructure characteristics and evolution of TiNi alloy /Q235 steel explosive composite interface
周恒,马宏昊,沈兆武,杨明,徐俊峰
ZHOU Heng,MA Hong-hao,SHEN Zhao-wu,YANG Ming,XU Jun-feng
摘要(Abstract):
为了研究TiNi合金/Q235钢爆炸复合板界面微观结构及形成机理,分别以Ti质量分数50.8%的TiNi合金板、Q235钢板为复板和基板,利用爆炸焊接技术制备了TiNi合金/Q235钢层状复合材料。通过SEM和EDS检测手段对结合界面的微观结构了进行分析,并结合光滑粒子流体动力学(SPH)数值模拟方法,揭示其演化过程。同时,利用拉伸和压剪实验,测试了界面的力学性能。结果表明,TiNi合金/Q235钢爆炸复合板界面呈现规则的波状结合,界面拉伸强度达到683 MPa,压剪强度达到291 MPa。数值模拟分析显示,碰撞点离开后,界面熔融物质仍具有较高运动速度,与受主射流裹挟和高压区挤压而侵入界面的熔融金属流相向运动,发生强烈的圆周运动和机械搅拌,最终形成涡旋区。
In order to study the interface microstructure and formation mechanism of the TiNi alloy/Q235 steel explosive composite plate, the layered TiNi alloy/Q235 steel composite material was prepared by explosive welding technology using TiNi alloy plate with a mass fraction of 50.8% Ti as the composite plate and Q235 steel plate as the substrate. The microstructure of the interface was analyzed by the SEM and EDS, and its evolution process of the interface was revealed by the smoothed particle hydrodynamics(SPH) numerical simulation method. At the same time, the mechanical properties of the interface were tested by tensile and compressive shear experiments. The results show that the interface of the TiNi alloy/Q235 steel explosive composite plate presents regular wavy bonding, the interfacial tensile strength reaches 683 MPa and the compressive shear strength reaches 291 MPa. The numerical simulation analysis shows that after the collision point leaves, the molten material of the interface still has a high velocity, and it moves in the opposite direction of the molten metal flow invaded the interface by the main jet flow and the high pressure zone extrusion, resulting in strong circular motion and mechanical stirring, and finally forming a vortex zone.
关键词(KeyWords):
记忆合金;爆炸焊接;SPH模拟;微观结构特性
shape memory alloy;explosive welding;SPH simulation;microstructure characteristics
基金项目(Foundation): 国家自然科学基金资助项目(51874267);; 中央高校基本科研业务费资助项目(WK2480000008,WK2480000007)
作者(Author):
周恒,马宏昊,沈兆武,杨明,徐俊峰
ZHOU Heng,MA Hong-hao,SHEN Zhao-wu,YANG Ming,XU Jun-feng
DOI: 10.19931/j.EB.20210034
参考文献(References):
- [1] CHENG F T,SHI P,MAN H C.Cavitation erosion resistance of heat-treated NiTi[J].Materials Science & Engineering A,2003,339(1/2):312-317.
- [2] BZDC A,BHC M,CFT C,et al.Cavitation erosion-corrosion characteristics of laser surface modified NiTi shape memory alloy[J].Surface and Coatings Technology,2003,162(2/3):147-153.
- [3] 李洪梅.TiNi形状记忆合金与不锈钢异种材料激光焊研究[D].长春:吉林大学,2011.LI H M.Study on laser welding of dissimilar materials between TiNi shape memory alloy and stainless steel[D].Changchun:Jilin University,2011.
- [4] LYSAK V I,KUZMIN S V.Energy balance during explosive welding[J].Journal of Materials Processing Technology,2015,222:356-364.
- [5] BELYAEV S,RU BA NIK V,RESNINA N,et al.Martensitic transformation and physical properties of 'steel-TiNi' bimetal composite,produced by explosion welding[J].Phase Transitions,2010,83(4):276-283.
- [6] YANG M,MA H H,SHEN Z W.Study on explosive welding of Ta2 titanium to Q235 steel using colloid water as a covering for explosives[J].Journal of Materials Research and Technology,2019,8(6):5 572-5 580.
- [7] YANG M,MA H H,SHEN Z W,et al.Application of colloid water covering on explosive welding of AA1060 Foil to Q235 steel plate[J].Propellants,Explosives,Pyrotechnics,2020.
- [8] ATHAR M M H,TOLAMINEJAD B.Weldability window and the effect of interface morphology on the properties of Al /Cu /Al laminated composites fabricated by explosive welding[J].Materials & Design,2015,86:516-525.
- [9] LYSAK V I,KUZMIN S V.Lower boundary in metal explosive welding evolution of ideas[J].Journal of Materials Processing Technology,2012,212(1):150-156.
- [10] 杨明,马宏昊,沈兆武,等.304不锈钢/Q235钢的多面约束装药爆炸焊接[J].含能材料,2018,26(5):377-382.YANG M,MA H H,SHEN Z W,et al.Explosive welding of 304 stainless steel to Q235 steel with multidimensional constraint charge[J].Chinese Journal of Energetic Materials,2018,26(5):377-382.
- [11] 李晓杰,王宇新,王小红,等.双金属爆炸焊接参数设计理论[J].工程爆破,2020,26(5):5-17.LI X J,WANG Y X,WANG X H,et al.Theory on design of bimetal explosive welding parameter[J].Engineering Blasting,2020,26(5):5-17.
- [12] FLIS W J.A lagrangian approach to modeling the acceleration of metal by explosives[C]// 17th Southeastern Conference on Theoretical and Applied Mechanics.1994.
- [13] VAIDYANATHAN P V,RAMANATHAN A.Computer-aided design of explosive welding systems[J].Journal of Materials Processing Technology,1993,38(3):501-516.
- [14] CHU Q,MIN Z,LI J,et al.Experimental and numerical investigation of microstructure and mechanical behavior of titanium/steel interfaces prepared by explosive welding[J].Materials Science & Engineering A,2017,689(24):323-331.
- [15] MOUSAVI S,SARTANGI P F.Experimental investigation of explosive welding of cp-titanium/AISI 304 stainless steel[J].Materials & Design,2009,30(3):459-468.
- [16] PAUL H,MISZCZYK M M,CHULIST R,et al.Microstructure and phase constitution in the bonding zone of explosively welded tantalum and stainless steel sheets[J].Materials & Design,2018,153(5):177-189.
- [17] NASSIRI A,CHINI G,VIVEK A,et al.Arbitrary Lagrangian-Eulerian finite element simulation and experimental investigation of wavy interfacial morphology during high velocity impact welding[J].Materials & Design,2015,88(25):345-358.
- [18] ZHANG H,JIAO K X,ZHANG J L,et al.Comparisons of the microstructures and micro-mechanical properties of copper/steel explosive-bonded wave interfaces[J].Materials Science and Engineering A,2019,756:430-441.
- [19] 陈沛,段卫东,曾国伟,等.钛/钢爆炸焊接界面波形及缺陷组织的形成机理[J].爆破,2019,36(1):130-136.CHEN P,DUAN W D,ZENG G W,et al.Formation mechanism of interface waveform and defect microstructure in Ti/Steel explosive welding[J].Blasting,2019,36(1):130-136.
- [20] BAHRANI A S,BLACK T J,CROSSLAND B.The mechanics of formation in explosive welding[J].Proc R Soc A,1967,296:123-136.
- [21] RAGHAVAN V.Fe-Ni-Ti (Iron-Nickel-Titanium).[J].Journal of Phase Equilibria & Diffusion,2010,31:186-189.