TNT炸药爆炸场中三波点的数值模拟Numerical simulation of triple point in the explosion field of TNT explosive
曲艳东;杨尚;李思宇;翟诚;
QU Yan-dong;YANG Shang;LI Si-yu;ZHAI Cheng;School of Civil and Architectural Engineering,Liaoning University of Technology;
摘要(Abstract):
准确预测三波点的位置和揭示三波点的规律,对工程防护和实现弹药的高效损伤有着重要作用。基于LS-DYNA有限元软件,利用数值模拟方法研究了TNT炸药在混凝土地面上形成爆炸冲击波的三波点运动轨迹,并初步揭示了炸高、药量和炸药形状等因素对三波点高度的影响。研究表明:在爆炸场中,爆炸冲击波以炸药为中心向四周传播,三波点轨迹的高度均呈现逐渐增高的变化趋势。不论改变炸药的药量还是炸高,三波点高度的增速在中场(4.07.0 m)都较缓,而进入远场(>7.0 m)增速骤增。当炸药的炸高和药量相同,炸药形状不同时,圆柱状炸药在中场爆炸形成的三波点高度比长方体炸药略高,且高度增速都较缓;而在远场三波点的高度基本相等,且增速急剧上升,趋于定值。与炸药形状的影响相比,炸高和药量对TNT炸药爆炸冲击波的三波点高度的影响较大。
Accurately predicting the position of triple point and revealing the propagation law of triple point plays an important role in engineering protection and achieving high efficiency damage of ammunition. Based on LS-DYNA software,numerical simulation method is used to study the burst trajectory of triple point of blast shock wave when detonating TNT explosive in the air above concrete ground. The influence of the explosion height, quantity of the explosive, and shape of the explosive on the heights of triple point is also discussed. The results show that the blast shock wave propagated around the center of the explosive in the explosion field, and the height of the triple points increased gradually. Regardless of changing the quantity of the explosive charge or the explosion height, the growth rate of the triple point is slow in the midfield(4.07.0 m)都较缓,而进入远场(>7.0 m)增速骤增。当炸药的炸高和药量相同,炸药形状不同时,圆柱状炸药在中场爆炸形成的三波点高度比长方体炸药略高,且高度增速都较缓;而在远场三波点的高度基本相等,且增速急剧上升,趋于定值。与炸药形状的影响相比,炸高和药量对TNT炸药爆炸冲击波的三波点高度的影响较大。
Accurately predicting the position of triple point and revealing the propagation law of triple point plays an important role in engineering protection and achieving high efficiency damage of ammunition. Based on LS-DYNA software,numerical simulation method is used to study the burst trajectory of triple point of blast shock wave when detonating TNT explosive in the air above concrete ground. The influence of the explosion height, quantity of the explosive, and shape of the explosive on the heights of triple point is also discussed. The results show that the blast shock wave propagated around the center of the explosive in the explosion field, and the height of the triple points increased gradually. Regardless of changing the quantity of the explosive charge or the explosion height, the growth rate of the triple point is slow in the midfield(4.07.0 m) of blasting and the growth rate in the far field(>7.0 m) increased sharply. When detonating the same explosive charge and the same explosion heights of the explosive with the different shapes, the height of the triple points formed from detonating the cylindrical explosive in the midfield are slightly higher than that formed from cubic explosive; meanwhile the growth rate of it also is relatively slower. The height of triple point substantially in the far field is almost equal and the growth rate is rising sharply and reaches a certain value, however. Compared with the influence of explosive shape, the blasting height and the quantity of the explosive have more influence on the height of triple point of the blast wave formed from detonating TNT explosive.
关键词(KeyWords):
三波点;爆炸场;数值模拟;炸高;爆炸冲击波
triple point;explosion field;numerical simulation;explosion height;explosion waves
基金项目(Foundation): 辽宁省普通高等学校优秀人才资助项目(LJQ2014063);; 辽宁省自然科学基金资助项目(20170540441)
作者(Authors):
曲艳东;杨尚;李思宇;翟诚;
QU Yan-dong;YANG Shang;LI Si-yu;ZHAI Cheng;School of Civil and Architectural Engineering,Liaoning University of Technology;
参考文献(References):
- [1]郭炜,俞统昌,金朋刚.三波点的测量与实验技术研究[J].火炸药学报,2007, 30(4):55-57.GUO W, YU T C, JIN P G. Test of triple point and study on its test technology[J]. Chinese Journal of Explosives&Propellants,2007,30(4):55-57.
- [2]段晓瑜,郭学永,聂建新,等.RDX基含铝炸药三波点高度的数值模拟[J].高压物理学报,2018, 32(3):75-82.DUAN X Y, GUO X Y, NIE J X, et al. Numerical simulation of the three-wave point of RDX-based Aluminized explosives[J]. Chinese Journal of High Pressure Physics, 2018, 32(3):75-82.
- [3] QU Y D, YAN H H, LI X J, et al. Overpressure comparison of blasting in air and special-made hemispherical structure[J]. Chinese Journal of High Pressure Physics, 2012, 26(1):95-101.
- [4]王锋,王保,董静,等.侵彻弹爆炸场三波点位置高度研究[J].兵器装备工程学报,2018, 39(5):31-34.WANG F, WANG B, DONG J, et al. Study on triple point law of explosive field of penetration warhead[J]. Journal of Ordnance Equipment Engineering,2018, 39(5):31-34.
- [5]乔登江.空中爆炸冲击波(I)基本理论[J].爆炸与冲击,1985, 5(4):78-85.QIAO D J. Explosion waves in air(I)basic theory[J]. Explosion and Shock Waves, 1985, 5(4):78-85.
- [6]杜红棉,曹学友,何志文,等.近地爆炸空中和地面冲击波特性分析和验证[J].弹箭与制导学报,2014,34(4):65-68.DU H M, CAO X Y, HE Z W, et al. Analysis and validation for characteristics of air and ground shock wave near field explosion[J]. Journal of Projectiles,Rockets, Missiles and Guidance, 2014, 34(4):65-68.
- [7]张学伦,张团,王昭明.基于AUTODYN爆炸场三波点的数值模拟[J].兵器装备工程学报,2015, 36(3):17-19.ZHANG X L, ZHANG T, WANG Z M. Numerical simulation on triple point explosion field with AUTODYN[J].Journal of Ordnance Equipment Engineering,2015, 36(3):17-19.
- [8]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA8.1进行显式动力分析[M].北京:清华大学出版社,2005.SHI D Y, LI Y C, ZHANG S M. Explicit dynamic analysis using ANSYS/LSDYNA 8.1[M]. Beijing:Tsinghua University Press, 2005.
- [9]石少卿,康建功,汪敏,等.ANSYS/LS-DYNA在爆炸与冲击领域内的工程应用[M].北京:中国建筑工业出版社,2011.SHI S Q, KANG J G, WANG M, et al. ANSYS/LSDYNA in the explosion and the impact in the field of engineering application[M]. Beijing:China Architecture Building Press, 2011.
- [10] HALLQUIST J O. LS-DYNA Theory manual[M].Livemore Software Technology Corporation, 2006.
- [11] QU Y D, LI X, KONG XQ, et al. Numerical simulation on dynamic behavior of reinforced concrete beam with initial cracks subjected to air blast loading[J].Engineering Structures, 2016, 128:96-110.
- [12]赵蓓蕾,崔村燕,陈景鹏,等.近地爆炸地面冲击波传播规律的数值研究[J].四川兵工学报,2015, 36(9):45-48.ZHAO B L, CUI C Y, CHEN J P, et al.Numerical study of propagation law of ground shock wave in near surface explosion[J]. Journal of Sichuan Ordnance, 2015, 36(9):45-48.
- [13] ZHANG X F, HUANG Z X, QIAO L. Detonation wave propagation in double-layer cylindrical high explosive charges[J]. Propellants Explosives Pyrotechnics, 2011, 36(3):210-218.