液态CO_2相变破岩时相邻天然气管道防护研究Study on adjacent natural gas pipeline protection during rock fracturing using liquid CO_2 phase-change method
成诗冰
CHENG Shi-bing
摘要(Abstract):
在随州城市综合管廊基坑开挖工程中,保护相邻天然气管道不受到破坏十分关键。为此,首先开展乳化炸药和液态CO_2相变破岩的爆破漏斗试验。一方面基于FARO Focus~S 150型三维激光扫描仪和Split-Desktop 4.0软件对开挖后的漏斗形状和块度进行分析,另一方面基于NUBOX-8016型测振仪分析振动频率和峰值质点振动速度(PPV)的衰减规律,通过线性拟合方法获得适用于该工况的萨道夫斯基公式。其次使用拟合得到的萨道夫斯基公式理论计算相邻天然气管道的最小安全距离。最后基于LS-DYNA建立三维数值模型对理论结果进行验证。试验结果表明,单根DM95-2.5液态CO_2致裂管相变破岩产生的爆破漏斗直径和深度分别为1.14 m和0.59 m,爆堆块度主要分布在4~15 cm之间。液态CO_2致裂技术相比乳化炸药具有更强的破岩和改善块度均匀性的能力,此外在减灾方面具有更大的优势。数值模拟结果表明,根据拟合的萨道夫斯基公式确定液态CO_2相变爆破参数是可靠的。研究结果对于同类工程具有重要的参考价值。
During the pit excavation of a utility tunnel in Suizhou City, it is critical to protect the adjacent natural gas pipelines from damage. Firstly, crater blasting experiments are carried out using emulsion explosives and the liquid CO_2 phase change rock-breaking method. On the one hand, the FARO Focus~S 150 three-dimensional(3D) laser scanner and Split-Desktop 4.0 software are used to analyze the shape of the post-blasting craters and the fragmentation size of muck piles. On the other hand, the vibration frequency and decay law of peak particle velocity(PPV) are analyzed based on the NUBOX-8016 vibration monitor, and a modified Sadovsky formula for this excavation engineering is obtained by linear fitting method. Secondly, the minimum safe distance of adjacent natural gas pipelines is calculated using the modified Sadovsky formula. Finally, by using the LS-DYNA software, a 3D numerical model is developed to verify the theoretical result. The experimental results indicated that the diameter and depth of the blast crater induced by a single DM95-2.5 liquid CO_2 fracturing tube are 1.14 m and 0.59 m, respectively, and the fragmentation size of the muck pile is mainly distributed between 4 to 15 cm. The liquid CO_2 fracturing technology has a greater ability to break rock and improve fragmentation uniformity than emulsion explosives and has more advantage in disaster mitigation. The numerical simulation results showe that the determination of liquid CO_2 phase change blast parameters based on the fitted Sadovsky formula is reliable. The findings of the present study are of great reference value for similar projects.
关键词(KeyWords):
爆破振动;液态CO_2;相变致裂;爆破漏斗;块度分布;峰值质点速度
blasting vibration;liquid CO_2;phase change fracturing;blasting crater;fragmentation distribution;peak particle velocity
基金项目(Foundation): 国家自然科学基金资助项目(12072376)
作者(Author):
成诗冰
CHENG Shi-bing
DOI: 10.19931/j.eb.20220003
参考文献(References):
- [1] 丁俊华,蔡继明.现行土地制度对我国城市化进程的制约及因应之策[J].河南大学学报(社会科学版),2022,62(1):14-20,152.DING J H,CAI J M.The constraints of the current land system on China' s urbanization process and the corresponding solutions[J].Journal of Henan University (Social sciences),2022,62(1):14-20,152.
- [2] 王凯.中国城镇化的绿色转型与发展[J].城市规划,2021:1-9.WANG K.Green transformation and development of China’s urbanization [J].City Planning Review,2021:1-9.
- [3] 郭明福,王海亮,徐品德,等.复杂环境下火车站场地平整控制爆破[J].工程爆破,2021,27(3):70-73,112.GUO M F,WANG H L,XU P D,et al.Controlled blasting for railway station ground leveling in a complex environment [J].Engineering Blasting,2021,27(3):70-73,112.
- [4] 李友军,肖婷,汪惠真.城市复杂环境石方精细快速爆破挖运施工技术与应用[J].采矿技术,2021,21(4):121-123,127.LI Y J,XIAO T,WANG H Z.Construction technology and application of fine and rapid blasting excavation and transportation of stone in complex urban environment [J].Mining Technology,2021,21(4):121-123,127.
- [5] 齐鹏,尚修瑞,刘川,等.复杂环境下跨路桥梁拆除爆破方案优化研究[J].爆破,2021,38(3):104-112.QI P,SHANG X R,LIU C,et al.Optimization of blasting schemes for demolition of cross-road bridges in complicated conditions [J].Blasting,2021,38(3):104-112.
- [6] 杨辉,袁翊硕,柴亚博,等.复杂环境下180 m高烟囱定向拆除爆破[J].工程爆破,2022,28(2):84-92.YANG H,YUAN Y S,CHAI Y B,et al.Directional demolition blasting of a 180 m high chimney in a complex environment [J].Engineering Blasting,2022,28(2):84-92.
- [7] 刘曙亮,王猛,陈郁平,等.城市复杂环境下硬岩隧道非爆破施工关键技术研究[J].市政技术,2021,39(9):87-92.LIU S L,WANG M,CHEN Y P,et al.Study on key non-explosive construction technology in hard rock tunnel under complex urban conditions[J].Municipal Engineering Technology,2021,39(9):87-92.
- [8] 谭毅.静态破碎剂的应用技术研究[J].山西煤炭,2012,31(5):65-66,70.TAN Y.Application technology of static cracking agents [J].Shanxi Coal,2012,31(5):65-66,70.
- [9] 翁海龙.液压岩石分裂机在煤矿的应用[J].陕西煤炭,2019,38(6):152-154.WENG H L.Application of hydraulic rock splitter in coal mines [J].Shaanxi Coal,2019,38(6):152-154.
- [10] GAO C L,ZHOU Z Q,LI Z H,et al.Peridynamics simulation of surrounding rock damage characteristics during tunnel excavation [J].Tunnelling and Underground Space Technology,2020,97:103289.
- [11] HOLMBERG R,WHITE T.Cardox system brings benefits in the mining of large coal [J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1995,243(1):31-33.
- [12] 郭志兴.液态二氧化碳爆破筒及现场试爆[J].爆破,1994(3):72-74.GUO Z X.Liquid carbon dioxide explosion cylinder and field test explosion [J].Blasting,1994(3):72-74.
- [13] 张嘉凡,高壮,程树范,等.煤岩HJC模型参数确定及液态CO2爆破特性研究[J].岩石力学与工程学报,2021.40(S1):2 633-2 642.ZHANG J F,GAO Z,CHENG S F,et al.Parameters determination of coal-rock HJC model and research on blasting characteristics by liquid CO2 [J].Chinese Journal of Rock Mechanics and Engineering,2021,40(S1):2 633-2 642.
- [14] 张柏林,李豪君,张兴华.基于COMSOL数值模拟的液态CO2相变致裂布孔参数优化[J].煤矿安全,2018,49(9):207-210.ZHANG B L,LI H J,ZHANG X H.Parameters optimization for hole layout of liquid CO2 phase-change fracturing technology based on COMSOL numerical simulation[J].Safety in Coal Mines,2018,49(9):207-210.
- [15] LI Q Y,CHEN G,LUO D Y,et al.An experimental study of a novel liquid carbon dioxide rock-breaking technology [J].International Journal of Rock Mechanics and Mining Sciences,2020,128:104244.
- [16] 成诗冰,洪志先.液态CO2致裂技术在管廊基坑台阶开挖中的应用[J].工程爆破,2021,27(5):80-89.CEHNG S B,HONG Z X.Application of liquid CO2 fracturing technology in bench excavation of utility tunnel foundation pit [J].Engineering Blasting,2021,27(5):80-89.
- [17] 赵程鹏,商武锋,许小泉,等.液态CO2相变开挖岩体孔间距参数研究[J].工程爆破,2021,27(3):74-82.ZHAO C P,SHANG W F,XU X Q,et al.Study on borehole spacing parameters of rock excavation by liquid CO2 phase change[J].Engineering Blasting,2021,27(3):74-82.
- [18] 陶明,赵华涛,马敖,等.液态CO2相变致裂破岩与炸药破岩综合对比分析[J].爆破,2018,35(2):41-49.TAO M,ZHAO H T,MA A,et al.Comprehensive comparative analysis of liquid CO2 phase change fracturing and explosive rock fracturing[J].Blasting,2018,35(2):41-49.
- [19] 刘小雄,李启月,冯国伟,等.液态二氧化碳相变破岩振动能量分布研究[J].矿冶工程,2018,38(3):5-10.LIU X X,LI Q Y,FENG G W,et al.Vibrational energy distribution of rock broken by phase transition of liquid carbon dioxide [J].Mining and Metallurgical Engineering,2018,38(3):5-10.
- [20] 董庆祥,王兆丰,韩亚北,等.液态CO2相变致裂的TNT当量研究[J].中国安全科学学报,2014,24(11):84-88.DONG Q X,WANG Z F,HAN Y B,et al.Research on TNT equivalent of liquid CO2 phase-transition fracturing[J].China Safety Science Journal,2014,24(11):84-88.
- [21] 贺志宏,夏仕柏.西山矿区煤层顺层孔CO2爆破增透试验研究[J].安徽理工大学学报(自然科学版),2017,37(4):54-58.HE Z H,XIA S B.Experimental study on CO2 blasting of bedding hole in Xishan coal-mining area [J].Journal of Anhui University of Science and Technology (Natural science),2017,37(4):54-58.
- [22] GOU Y G,SHI X Z,ZHOU J,et al.Attenuation assessment of blast-induced vibrations derived from an underground mine [J].International Journal of Rock Mechanics and Mining Sciences,2020,127:104220.
- [23] YI C P,JOHANSSON D,GREBERG J.Effects of in-situ stresses on the fracturing of rock by blasting[J].Computers and Geotechnics,2018,104:321-330.