工程爆破

2012, v.18;No.68(02) 14-17+49

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

舰载超近程反导弹药冲击引爆战斗部的研究
RESEARCH ON IMPACTING AND IGNITING WARHEAD BY SUPER CLOSE-IN ANTI-MISSILE AMMUNITION ON BOARD

杜茂华,王伟力,黄勇,黄雪峰,宋之勇,孙鲁青
DU Mao-hua1,WANG Wei-li1,HUANG Yong2,HUANG Xue-feng1, SONG Zhi-yong1,SUN Lu-qing3(1.Naval Aeronautical and Engineering Institute

摘要(Abstract):

建立了舰载超近程反导智能弹药毁伤元撞击反舰导弹战斗部的理论模型和有限元模型,计算了不同速度下舰载超近程反导智能弹药毁伤元冲击引爆反舰导弹战斗部的可能性,然后利用有限元方法进行了仿真计算,仿真结果与理论分析吻合较好。研究结果表明:当毁伤元材料采用93#钨、速度大于1.80km/s时,撞击产生的冲击波压力理论计算值和数值模拟结果均大于5.63GPa,说明舰载超近程反导智能弹药毁伤元的高速撞击可以引爆加装Comp.B炸药的反舰导弹战斗部。
The theory model and the finite element model of super close-in anti-missile ammunition's damage element on board impacting the anti-ship missile's warhead were founded and the possibility of super close-in anti-missile ammunition's damage element on board with different velocities igniting the anti-ship missile's warhead was analyzed,then the physics process of the super close-in anti-missile ammunition's damage element on board igniting the anti-ship missile's warhead were simulated and calculated by using the finite element method.The simulation results well accorded with the theory analysis results.The research results show that theory value and the simulation value of the shock wave pressure caused by impact are all greater than 5.63GPa when the damage element's material is 93# tungsten and the velocity of the damage element is greater than 1.80km/s.So the anti-ship missile's warhead which is loaded Comp.B explosive can be detonated by high velocity impact of the super close-in anti-missile ammunition's damage element on board.

关键词(KeyWords): 舰艇;超近程;反导弹药;冲击;起爆;战斗部
Warship;Supper close-in;Anti-missile ammunition;Shock,Ignition;Warhead

Abstract:

Keywords:

基金项目(Foundation):

作者(Author): 杜茂华,王伟力,黄勇,黄雪峰,宋之勇,孙鲁青
DU Mao-hua1,WANG Wei-li1,HUANG Yong2,HUANG Xue-feng1, SONG Zhi-yong1,SUN Lu-qing3(1.Naval Aeronautical and Engineering Institute

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享