工程爆破

2012, v.18;No.67(01) 11-15

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于神经网络的预裂爆破参数智能设计
INTELLIGENT DESIGN OF PARAMETERS BASED ON NEURAL NETWORK IN PRESPLITTING BLASTING

唐海;袁超;梁开水;
TANG Hai1,YUAN Chao1,LIANG Kai-shui2(1.Hunan Provincial Key Laboratory of Safe Mining Techniques of Coal Mines,Hunan University of Science and Technology,Xiangtan 411201,Hunan,China;2.School of Resources and Environmental Engineering,Wuhan University of Technology,Wuhan 430070,China)

摘要(Abstract):

预裂爆破具有减振和保护岩体等特点,在爆破工程中得到了广泛运用。通过分析认为预裂爆破成缝理论和成缝计算模型均不完善,同时岩石成缝与岩石性质、地质条件、装药量、孔间距等多种因素有关。目前为止,预裂爆破的设计主要依靠经验公式。运用人工神经网络综合方法,建立了预裂爆破参数设计的BP神经网络模型,并借助Matlab语言,开发了预裂爆破参数优化设计智能系统,且用工程实例进行了验证。结果表明,该智能系统设计参数与实际设计参数相当符合。
Presplitting blasting has been applied in engineering widely,with its characteristics of the shock absorption and protection of rock mass.The theory and calculation model of cracks shaped by presplitting blasting have been not perfect to analyze rock mass,and fracture of rock shaped by presplitting blasting is related to property of rock mass,geology,charge weight and explosive distance.Up to now,design of parameters has depend on empirical formula in presplitting blasting.The model of BP neural network was established in order to design presplitting blasting parameters with artificial neural network method.An intelligent system of parameters optimization was built by Matlab and was proved through application of it into engineering practice.The results showed that blasting parameters designed by the intelligent system were consistent with practical design parameters basically.

关键词(KeyWords): 神经网络;Matlab;预裂爆破;参数优化;智能系统
Neural network;Matlab;Presplitting blasting;Blasting parameters optimization;Intelligent system

Abstract:

Keywords:

基金项目(Foundation): 湖南省高校科技创新团队支持计划资助;; 湖南省教育厅资助科研项目(08c325)

作者(Authors): 唐海;袁超;梁开水;
TANG Hai1,YUAN Chao1,LIANG Kai-shui2(1.Hunan Provincial Key Laboratory of Safe Mining Techniques of Coal Mines,Hunan University of Science and Technology,Xiangtan 411201,Hunan,China;2.School of Resources and Environmental Engineering,Wuhan University of Technology,Wuhan 430070,China)

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享