爆炸荷载作用下覆土库外部冲击波传播规律The law of shock wave propagation outside Earth Covered Magazine under explosion
荣凯;杨军;董文学;唐红亮;崔宁;
RONG Kai;YANG Jun;DONG Wen-xue;TANG Hong-liang;CUI Ning;State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology;Research Institute of Propellant and Explosive Engineering and Safety Technology of China Weapons Industry;
摘要(Abstract):
为了研究爆炸荷载作用下覆土库外部冲击波的传播规律,采用有限元软件ANSYS/LS-DYNA,结合将覆土库结构破坏与冲击波传播先后模拟的新手段,对覆土库外部距爆心比例距离小于15 m/kg(1/3)范围内空气冲击波的传播过程进行模拟,并对模拟所得不同测线方向(0°、60°、90°、135°和180°)冲击波峰值超压和冲击波到达时间进行分析。结果表明:测点距爆心比例距离在1~15 m/kg(1/3)范围内空气冲击波的传播过程进行模拟,并对模拟所得不同测线方向(0°、60°、90°、135°和180°)冲击波峰值超压和冲击波到达时间进行分析。结果表明:测点距爆心比例距离在1~15 m/kg(1/3)范围内,随比例距离的增大,在60°和90°测线方向,冲击波峰值超压衰减率从87.63%降到26.39%;在135°和180°测线方向,冲击波峰值超压衰减率从81.19%降到1.39%。随着测点距爆心比例距离的增大,冲击波峰值超压呈指数型衰减,冲击波到达时间呈线性增加。
In order to study the law of shock wave propagation outside Earth Covered Magazine(ECM) under explosion, combined with the new method of simulating the structure failure of ECM and the propagation of shock wave successively, the finite element software ANSYS/LS-DYNA is used to simulate the propagation process of shock wave when the scaled distance between test point and detonation center is less than 15 m/kg(1/3)范围内,随比例距离的增大,在60°和90°测线方向,冲击波峰值超压衰减率从87.63%降到26.39%;在135°和180°测线方向,冲击波峰值超压衰减率从81.19%降到1.39%。随着测点距爆心比例距离的增大,冲击波峰值超压呈指数型衰减,冲击波到达时间呈线性增加。
In order to study the law of shock wave propagation outside Earth Covered Magazine(ECM) under explosion, combined with the new method of simulating the structure failure of ECM and the propagation of shock wave successively, the finite element software ANSYS/LS-DYNA is used to simulate the propagation process of shock wave when the scaled distance between test point and detonation center is less than 15 m/kg(1/3). The peak overpressure and arrival time of shock wave in different directions(0°, 60°, 90°, 135° and 180°) are analyzed. The results show that when the scaled distance from the test point to the detonation center is within the range of 1-15 m/kg(1/3). The peak overpressure and arrival time of shock wave in different directions(0°, 60°, 90°, 135° and 180°) are analyzed. The results show that when the scaled distance from the test point to the detonation center is within the range of 1-15 m/kg(1/3), the attenuation rate of the peak overpressure of the shock wave drops from 87.63% to 26.39% in the direction of the test line at 60° and 90°; The attenuation rate of the peak overpressure of the shock wave drops from 81.19% to 1.39% in the direction of the test line at 135° and 180°. With the increase of the scaled distance from the test point to the detonation center, the peak overpressure of the shock wave decreases exponentially and the arrival time of the shock wave increases linearly.
关键词(KeyWords):
爆炸冲击波;数值模拟;覆土库;比例距离
blast wave;numerical simulation;Earth Covered Magazine;scale distance
基金项目(Foundation): 国家自然科学基金资助项目(51774043)
作者(Authors):
荣凯;杨军;董文学;唐红亮;崔宁;
RONG Kai;YANG Jun;DONG Wen-xue;TANG Hong-liang;CUI Ning;State Key Laboratory of Explosion Science and Technology, Beijing Institute of Technology;Research Institute of Propellant and Explosive Engineering and Safety Technology of China Weapons Industry;
参考文献(References):
- [1] LU Y,WANG Z Q,CHONG K R.A comparative study of buried structure in soil subjected to blast load using 2D and 3D numerical simulations[J].Soil Dynamics and Earthquake Engineering,2005,25(4):275-288.
- [2] 洪武,徐迎,金丰年.地下拱形结构爆炸响应计算二维和三维模型比较[J].振动与冲击,2014,33(9):142-147.HONG W,XU Y,JIN F N.Comparison between 2D and 3D models for computing blast response of buried arching structures[J].Journal of Vibration and Shock,2014,33(9):142-147.
- [3] 康婷,许金余,白应生.爆炸冲击荷载作用下拱结构的弹塑性动力响应研究[J].兵工学报,2013,34(9):1 097-1 102.KANG T,XU J Y,BAI Y S.Elastic-plastic analysis on dynamic response of arch subjected to explosive impact[J].Acta Armamentarii,2013,34(9):1 097-1 102.
- [4] TIAN L,DENG P.Surface overpressure distribution and dynamic response of the retaining wall of the underground structure subjected to inner explosion[J] .Advanced Materials Research,2013,790:396-400.
- [5] 仲倩,王伯良,黄菊.TNT空中爆炸超压的相似律[J].火炸药学报,2010,33(4):32-35.ZHONG Q,WANG B L,HUANG J.Study on the similarity law of TNT explosion overpressure in air[J].Chinese Journal of Explosives & Propellants,2010,33(4):32-35.
- [6] 夏曼曼,吴红波,徐飞扬.乳化炸药空中爆炸冲击波衰减规律的研究[J].爆破器材,2017,46(4):21-24.XIA M M,WU H B,XU F Y.Attenuation rules of shock wave in air blasting of emulsion explosive[J].Explosive Materials,2017,46(4):21-24.
- [7] 刘伟,郑毅,秦飞.近地面TNT爆炸的试验研究和数值模拟[J].爆破,2012,29(1):5-9.LIU W,ZHENG Y,QIN F.Experimental and numerical simulation of TNT explosion on the ground[J].Blasting,2012,29(1):5-9.
- [8] 辛春亮,王俊林,余道建.TNT空中爆炸冲击波的工程和数值计算[J].导弹与航天运载技术,2018(3):98-102.XIN C L,WANG J L,YU D J.Empirical formula and numerical simulation of TNT explosion shock wave in free air[J].Missiles and Space Vehicles,2018(3):98-102.
- [9] 汪维,张舵,卢芳云.大当量TNT装药爆轰的远场数值模拟及超压预测[J].弹箭与制导学报,2010,30(1):127-130.WANG W,ZHANG D,LU F Y.Simulation of thousands kilograms of TNT explosion shock wave in air at distance far away and forecast of the peak overpressure[J].Journal of Projectiles,Rockets,Missiles and Guidance,2010,30(1):127-130.
- [10] JIANG J,D P BLAIR,G R BAIRD.Dynamic response of an elastic and viscoelastic full-space to a spherical source[J].International Journal for Numerical and Analytical Methods in Geomechanics,1995,19(3):181-193.
- [11] HALLQUIST J O.LS-DYNA theory manual[M].Livermore:Livermore Software Technology Corporation,2006:21-22.
- [12] 崔溦,宋慧芳,张社荣.土中爆炸作用下箱涵动力响应的SPH-FE耦合分析[J].爆炸与冲击,2012,32(5):551-556.CUI W,SONG H F,ZHANG S R.Coupled SPH-FE analysis for dynamic response of box culvert subjected to subsurface blast[J].Explosion and Shock Waves,2012,32(5):551-556.
- [13] 李海超,魏连雨,常春伟.黄土中爆炸挤密实验与数值模拟[J].爆炸与冲击,2018,38(2):289-294.LI H C,WEI L Y,CHANG C W.Experiment and numerical simulation of explosion compaction in loess[J].Explosion and Shock Waves,2018,38(2):289-294.
- [14] 徐轩.深孔柱状装药爆破模型试验与数值模拟研究[D].淮南:安徽理工大学,2017.XU X.Deep hole column blasting model test and numerical simulation research[D].Huainan:Anhui University of Science and Technology,2017.文章编号:1006-7051(2020)03-0008-08
- 荣凯
- 杨军
- 董文学
- 唐红亮
- 崔宁
RONG Kai- YANG Jun
- DONG Wen-xue
- TANG Hong-liang
- CUI Ning
- State Key Laboratory of Explosion Science and Technology
- Beijing Institute of Technology
- Research Institute of Propellant and Explosive Engineering and Safety Technology of China Weapons Industry
- 荣凯
- 杨军
- 董文学
- 唐红亮
- 崔宁
RONG Kai- YANG Jun
- DONG Wen-xue
- TANG Hong-liang
- CUI Ning
- State Key Laboratory of Explosion Science and Technology
- Beijing Institute of Technology
- Research Institute of Propellant and Explosive Engineering and Safety Technology of China Weapons Industry