工程爆破

2009, v.15;No.v.15(03) 22-24+39

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Past Issue) | 高级检索(Advanced Search)

基于微粒优化支持向量机的爆破振动强度预报及应用研究
PREDICTION AND APPLICATION OF BLASTING VIBRATION INTENSITY BASED ON SUPPORT VECTOR MACHINE WITH PARTICLE SWARM OPTIMIZATION ALGORITHM

陆凡东;方向;沈蔚;郭涛;
LU Fan-dong,FANG Xiang,SHEN Wei,GUO Tao(Engineering Institute of Engineering Corps,PLA Univ.of Sci.& Tech.,Nanjing 210007,China)

摘要(Abstract):

微粒优化支持向量机对爆破振动强度的预报能力优于经验公式法。比较高程差、水平距离、段药量、总药量、台阶高度、孔排距、抛掷方向和底盘抵抗线等8个输入参量不同组合的预报结果发现:前三个参量的组合预报效果最佳,预报相对误差仅为3.21%。
Support vector machine with particle swarm optimization algorithm is superiority over the empirical formula method on the prediction ability of blasting vibration intensity.Comparing the prediction results of different combinations of eight input elements such as height difference,horizontal distance,maximum charge,total charge,bench height,hole and row spacing,cast direction and batholithic resistance line,the combination of the former three elements was found to give best results,with the relative error being only at the level of 3.21%.

关键词(KeyWords): 爆破振动;强度预报;经验公式;支持向量机
Blasting vibration;Intensity prediction;Empirical formula;Support vector machine

Abstract:

Keywords:

基金项目(Foundation):

作者(Authors): 陆凡东;方向;沈蔚;郭涛;
LU Fan-dong,FANG Xiang,SHEN Wei,GUO Tao(Engineering Institute of Engineering Corps,PLA Univ.of Sci.& Tech.,Nanjing 210007,China)

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享