工程爆破

2023, v.29;No.132(02) 73-79+108

[打印本页] [关闭]
本期目录(Current Issue) | 过刊浏览(Archive) | 高级检索(Advanced Search)

基于高斯过程回归矿山爆破飞石距离预测模型
Prediction model of blasting flyrock distance in mine based on Gaussian process regression

黄晶柱,钟依禄,黄裘俊,肖维灵,孙俊涛,廖占象,胡玮锋
HUANG Jing-zhu,ZHONG Yi-lu,HUANG Qiu-jun,XIAO Wei-ling,SUN Jun-tao,LIAO Zhan-xiang,HU Wei-feng

摘要(Abstract):

为了提高矿山爆破飞石距离预测结果的精度,首先,根据马来西亚某矿山52次爆破作业记录的飞石距离相关参数,建立由6个输入(炮孔孔径、炮孔长度、最小抵抗线/孔距、炮孔填塞长度、最大一段装药量、炸药单耗)和1个输出(飞石距离)组成的数据库。然后,基于高斯过程回归机器学习算法,建立爆破飞石距离的预测模型,将其应用于马来西亚某矿山中,并与2种主流的机器学习方法(支持向量回归和神经网络)的预测结果进行对比。结果表明:从实际图-预测值图和残差分析看,基于双层神经网络构建的飞石距离预测模型的预测效果最差;从回归评价指标看,基于二次有理高斯过程回归建立的飞石距离预测模型的预测效果最优,其R-平方(R~2)值为0.9、均方根误差(RMSE)值为24.67、均方误差(MSE)值为608.61、平均绝对误差(MAE)值为21.42。由此可知,基于高斯过程回归预测矿山爆破飞石距离更精确。可为类似矿山爆破安全警戒范围计算提供理论基础。
In order to improve the accuracy of the prediction results of flyrock distance in mine. First, according to the parameters related to the flyrock distance recorded by 52 blasting operations in a mine in Malaysia, 6 inputs(borehole diameter, length of blasthole, burden to spacing, stemming length, maximum charge per delay, and powder factor) and 1 output(flyrock distance). Then, based on the Gaussian process regression machine learning algorithm, the prediction model of the flyrock distance from blasting was established, which is applied to a mine in Malaysia, and compared with two mainstream machine learning methods(support vector regression and neural network) were used to establish flyrock distance prediction models. The results show that from the actual value-predicted value graph and residual analysis, the flyrock distance prediction model based on two-layer neural network has the worst prediction effect; from the regression evaluation index, the flyrock distance prediction model based on quadratic rational Gaussian process regression has the best prediction effect. Its R-square(R~2) value is 0.9, root mean square error(RMSE) value is 24.67, mean square error(MSE) value is 608.61, and mean absolute error(MAE) value is 21.42. Conclusion: Based on the Gaussian process, the flyrock distance of mines is more accurate. It can provide the theoretical basis for calculation of similar mining blasting safety alert range.

关键词(KeyWords): 矿山爆破;高斯过程回归;飞石距离;预测模型
mine blasting;gaussian process regression;flyrock distance;predictive model

Abstract:

Keywords:

基金项目(Foundation): 江西省教育厅科技基金资助项目(GJJ200871,GJJ180503);; 江西理工大学高层次人才启动基金资助项目(205200100486);; 深圳职业技术学院校级科研启动基金资助项目(6022312007K);; 广东省基础与应用基础研究基金资助项目(2021A1515110730)

作者(Author): 黄晶柱,钟依禄,黄裘俊,肖维灵,孙俊涛,廖占象,胡玮锋
HUANG Jing-zhu,ZHONG Yi-lu,HUANG Qiu-jun,XIAO Wei-ling,SUN Jun-tao,LIAO Zhan-xiang,HU Wei-feng

DOI: 10.19931/j.EB.20210265

参考文献(References):

扩展功能
本文信息
服务与反馈
本文关键词相关文章
本文作者相关文章
中国知网
分享