岩爆倾向性估计的能量密度准则The criterion of energy density for estimating rock burst tendency
王树成
WANG Shu-cheng
摘要(Abstract):
为了估计高应力地区隧道工程施工的岩爆倾向性,根据高应力地区深埋隧道施工时发生岩爆的实际情况、地应力和岩石力学参数的测试结果,在采用有限差分软件FLAC3D建立隧道开挖模型基础上,进行了隧道开挖过程的数值模拟,比较了实际岩爆发生情况、不同断面位置(拱顶、拱腰、拱脚、墙腰、墙脚、拱底)最大弹性应变能密度α、储存-极限弹性应变能密度比值β的模拟结果,提出了基于最大弹性应变能密度α、储存-极限弹性应变能密度比值β的岩爆倾向性估计方法。结果表明,当最大弹性应变能密度分别为α<34.08 kJ/m~3、[34.08 kJ/m~3,78.50 kJ/m~3)、[78.50 kJ/m~3,114.27 kJ/m~3]、α>114.27 kJ/m~3时,或者储存-极限弹性应变能密度比值分别为β<1.0、[1.0, 2.5)、[2.5, 5.0]、β>5.0时,可能发生的岩爆等级分别为轻微、中等、强烈、剧烈;使用这2个能量密度判据,岩爆预估结果与实际情况基本一致。
In order to estimate the rock burst tendency during the constructions of the tunnel engineering in the high geo-stress surroundings, the practical rock bursts occurred during the tunnel constructions and the test results of the geo-stresses and rock mechanical parameters were used to establish the tunnel excavation model by using the finite differential software FLAC3D, and the numerical simulations of the tunnel excavation were then performed. The comparison was furthermore conducted among the practical rock bursts, the maximum strain energy density α, and the ratio β of the stored to ultimate elastic strain energy density from the numerical simulation results in various locations, concluding the vault, arch waist, arch foot, wall waist, wall foot, and arch bottom. The criteria for the estimation of the rock burst tendency were thereafter proposed. It shows that the slight, medium, strong, and violent rock bursts may happen if the maximum elastic strain energy density is α<34.08 kJ/m~3, belongs to [34.08 kJ/m~3, 78.50 kJ/m~3), [78.50 kJ/m~3, 114.27 kJ/m~3], and α>114.27 kJ/m~3, respectively, or if the ratios of the stored to ultimate elastic strain energy density is β>1.0, belongs to [1.0, 2.5), [2.5, 5.0], and β>5.0, respectively. The estimated rock bursts are consistent with actual ones as these two criteria in energy densities are used.
关键词(KeyWords):
隧道工程;能量密度;岩爆倾向性;准则
tunnel engineering;energy density;rock burst tendency;criterion
基金项目(Foundation): 中国铁建股份有限公司科技研究开发计划基金资助项目(17-C13)
作者(Author):
王树成
WANG Shu-cheng
DOI: 10.19931/j.EB.20210114
参考文献(References):
- [1] SEPEHRI M,APEL D B,ADEEB S,et al.Evaluation of mining-induced energy and rockburst prediction at a diamond mine in Canada using a full 3D elastoplastic fiinite element model [J].Engineering Geology,2020,266:105457.
- [2] 贾哲强,张茹,张艳飞,等.猴子岩水电站地下厂房岩爆综合预测研究[J].岩土工程学报,2016,38(S2):110-116.JIA Z Q,ZHANG R,ZHANG Y F,et al.Integrated prediction for rockburst of underground powerhouse of Houziyan hydropower station [J].Chinese Journal of Geotechnical Engineering,2016,38(S2):110-116.
- [3] 唐礼忠,范若楠,宋徉霖.深埋巷道分区破裂过程的数值模拟[J].工程爆破,2020,26(4):1-7.TANG L Z,FAN R N,SONG X L.Numerical simulation of zonal disintegration process in deep roadway [J].Engineering Blasting,2020,26(4):1-7.
- [4] 赵建平,程贝贝,卢伟,等.深部高地应力下岩石双孔爆破的损伤规律[J].工程爆破,2020,26(5):14-20,21.ZHAO J P,CHENG B B,LU W,et al.Damage law of rock double holes blasting under deep high in-situ stress [J].Engineering Blasting,2020,26(5):14-20,21.
- [5] 蔡美峰,冀东,郭奇峰.基于地应力现场实测与开采扰动能量积聚理论的岩爆预测研究[J].岩石力学与工程学报,2013,32(10):1 973-1 980.CAI M F,JI D,GUO Q F,Study of rockburst prediction based on in-situ stress measurement and theory of energy accumulation caused by mining disturbance [J].Chinese Journal of Rock Mechanics and Engineering,2013,32(10):1 973-1 980.
- [6] 蒋邦友,王连国,顾士坦,等.基于能量原理的深埋隧洞TBM施工岩爆机理分析[J].采矿与安全工程学报,2017,34(6):1 103-1 109.JIANG B Y,WANG L G,GU S T,et al.Study on rockburst mechanism of TBM excavation for deep tunnel based on energy principle [J].Journal of Mining and Safety Engineering,2017,34(6):1 103-1 109.
- [7] 王鹰,李立民,谭伟,等.引汉济渭工程超长深埋隧洞岩爆特征及防治技术研究[J].工程地质学报,2016,24:874-880.WANG Y,LI L M,TAN W,et al.Research on characteristics and control techniques of rock burst in Qingling Tunnel of water diversion project from Han River to Wei River [J].Journal of Engineering Geology,2016,24:874-880.
- [8] 邱道宏,李术才,张乐文,等.基于隧洞超前地质探测和地应力场反演的岩爆预测研究[J].岩土力学,2015,36(7):2 034-2 040.QIU D H,LI S C,ZHANG L W,et al.Rockburst prediction based on tunnel geological exploration and ground stress field inverse analysis [J].Rock and Soil Mechanics,2015,36(7):2 034-2 040.
- [9] 裴佃飞,苗胜军,龙超,等.基于多种判据和能量聚集的岩爆倾向性研究[J].中国矿业,2014(2):79-83.PEI D F,MIAO S J,LONG C,et al.Rock burst tendency research based on a varity of criteria and gathered energy [J].China Mining Magazine,2014(2):79-83.
- [10] PROCHáZKA P P.Application of discrete element methods to fracture mechanics of rock bursts [J].Engineering Fracture Mechanics,2004,71(4):601-618.
- [11] 王延可,李天斌,陈国庆,等.岩爆特性PFC3D数值模拟试验研究[J].现代隧道技术,2013,50(4):98-103.WANG Y K,LI T B,CHEN G Q,et al.Experimental study of rock burst characteristics with the PFC3D numerical simulation [J].Modern Tunnelling Technology,2013,50(4):98-103.
- [12] 陶振宇.高地应力区的岩爆及其判别[J].人民长江,1987(5):25-32.TAO Z Y.Rockburst and its criterion in highly geostress zone [J].Yangtze River,1987(5):25-32.
- [13] 李夕兵,宫凤强,王少锋,等.深部硬岩矿山岩爆的动静组合加载力学机制与动力判据[J].岩石力学与工程学报,2019,38(4):708-723.LI X B,GONG F Q,WANG S F,et al.Coupled static-dynamic loading mechanical mechanism and dynamic criterion of rockburst in deep hard rock mines [J].Chinese Journal of Rock Mechanics and Engineering,2019,38(4):708-723.
- [14] WANG Y,XU J,XU J,et al.Estimation of rock burst grades using rock mass strength [J].Advances in Civil Engineering,2020,2517459.
- [15] 徐俊帅,徐金明,涂齐亮.基于地应力和岩体强度的岩爆预判[J].中国地质灾害与防治学报,2018,29(3):52-58,71.XU J S,XU J M,TU Q L.Prediction of rock burst based on field geostress and rock mass strength [J].The Chinese Journal of Geological Hazard and Control,2018,29(3):52-58,71.
- [16] 陈鹏宇,余宏明,师华鹏.基于权重反分析和标准化模糊综合评价的岩爆预测模型[J].岩石力学与工程学报,2014,33(10):2 154-2 160.CHEN P Y,YU H M,SHI H P.Prediction model for rockburst based on weighted back analysis and standardized fuzzy comprehensive evaluation [J].Chinese Journal of Rock Mechanics and Engineering,2014,33(10):2 154-2 160.
- [17] 杨凡杰,周辉,卢景景,等.岩爆发生过程的能量判别指标[J].岩石力学与工程学报,2015,34(S1):2 706-2 714.YANG F J,ZHOU H,LU J J,et al.An energy criterion in process of rockburst [J].Chinese Journal of Rock Mechanics and Engineering,2015,34(S1):2 706-2 714.
- [18] LI N,ZOU Y,ZHANG S,et al.Rock brittleness evaluation based on energy dissipation under triaxial compression [J].Journal of Petroleum Science and Engineering,2019,183:106349.
- [19] WANG Y,FENG W K,HU R L,et al.Fracture evolution and energy characteristics during marble failure under triaxial fatigue cyclic and confining pressure unloading (FC-CPU) conditions [J].Rock Mechanics and Rock Engineering,2021,54:799-818.
- [20] PAN X,LYU Q.A quantitative strain energy indicator for predicting the failure of laboratory?偉cscale rock samples:application to shale rock [J].Rock Mechanics and Rock Engineering,2018,51:2 689-2 707.
- [21] LI F,YOU S,JI H,et al.Strength and energy exchange of deep sandstone under high hydraulic conditions [J].Journal of Central South University,2020,27:3 053-3 062.
- [22] 费鸿禄,赵春生,杨朝阳,等.爆破荷载作用下隧道围岩损伤范围[J].工程爆破,2017,23(6):1-4.FEI H L,ZHAO C S,YANG C Y,et al.Damage range of tunnel surrounding rock under blasting load [J].Engineering Blasting,2017,23(6):1-4.
- [23] 吴进科,孔恒,傅洪贤,等.小间距隧道钻爆施工开挖工序研究[J].工程爆破,2017,23(5):56-62.WU J K,KONG H,FU H X,et al.The research of the process of drilling and blasting of small spacing tunnel [J].Engineering Blasting,2017,23(5):56-62.
- [24] 徐汪豪,陶力铭,徐晨,等.基于弹性应变能的深埋硬岩隧道岩爆研究[J].隧道建设,2018,38(11):78-85.XU W H,TAO L M,XU C,et al.Research on rock burst of deep hard rock tunnel based on elastic strain energy [J].Tunnel Construction,2018,38(11):78-85.