精确延时爆破振动速度峰值预测模型Peak vibration velocity prediction model of precision delay blasting
李顺波;杨仁树;杨军;
LI Shun-bo;YANG Ren-shu;YANG Jun;School of Mechanic & Civil Engineering,China University of Mining & Technology(Beijing);State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology;
摘要(Abstract):
根据几何地震学的基本原理,以单孔爆破振动速度峰值为基础,按照毫秒延时时间间隔建立精确延时逐孔起爆振动峰值预测模型。不仅可以预测爆破振动速度峰值,而且能够直观地展现爆破区域范围内振动峰值的变化情况,并能从保护区域内振动峰值出发,设定合理的毫秒延时间隔时间。根据现场应用数码电子雷管的深孔爆破实验,该方法计算的预测振动峰值与实测振动峰值吻合良好,计算结果可靠性较好,可以在实际工程中推广使用。
According to the basic principle of geometric seismology,with single hole blasting peak vibration velocity as basis and in accordance with the millisecond delay interval,the peak vibration velocity model of precision delay blasing with hole by hole was established.The results showed that the developed method could be used to predict the blasting vibration velocity peaks,it also could intuitively show the variation of blasting peak vibration velocity in the region and reasonable millisecond delay interval was set from the peak in protection region.The calculated velocity was coincident with the recorded ones in the deep hole blasting tests using electronic detonators.It indicated that the developed predication method was reliable for engineering applications.
关键词(KeyWords):
精确延时;爆破振动;预测模型;振动速度峰值
Precision delay;Blasting vibration;Prediction model;Peak vibration velocity
基金项目(Foundation):
作者(Authors):
李顺波;杨仁树;杨军;
LI Shun-bo;YANG Ren-shu;YANG Jun;School of Mechanic & Civil Engineering,China University of Mining & Technology(Beijing);State Key Laboratory of Explosion Science and Technology,Beijing Institute of Technology;
参考文献(References):
- [1]易长平,冯林,王刚,等.爆破振动预测研究综述[J].现代矿业,2011,27(5):1-5.YI Chang-ping,FENG Lin,WANG Gang,et al.Summary of blasting vibration prediction[J].Modern Mining,2011,27(5):1-5.
- [2]SINGB T N.Artificial neural network approach for prediction and control of ground vibration in mines[J].Mining Technology,2004,14(4):251-256.
- [3]徐全军,刘强,聂渝军,等.爆破地震峰值预报神经网络研究[J].爆炸与冲击,1999,19(2):38-43.XU Quan-jun,LIU Qiang,NIE Yu-jun,et al.Study of neural network prediction on peak particle amplitude of blasting ground vibration[J].Explosion and Shock Waves,1999,19(2):38-43.
- [4]言志信,言涅,江平,等.爆破振动峰值速度预报方法探讨[J].振动与冲击.2010,29(5):179-182.YAN Zhi-xin,YAN Nie,JIANG Ping,et al.Prediction methods for blasting-induced ground vibration velocity[J].Journal of Vibration and Shock,2010,29(5):179-182.
- [5]赵华兵,龙源,刘好全,等.城市隧道爆破振动速度峰值预测神经网络法应用[J].工程爆破,2014,20(5):23-27.ZHAO Hua-bing,LONG Yuan,LIU Hao-quan,et al.Application of neural network to prediction of peak amplitude of blasting vibration velocity of urban tunnel[J].Engineering Blasting,2014,20(5):23-27.
- [6]张艺峰,姚道平,谢志招.基于BP神经网络的爆破振动峰值及主频预测[J].工程地球物理学报,2008,5(2):222-226.ZHANG Yi-feng,YAO Dao-ping,XIE Zhi-zhao.The prediction of blasting vibration peak value&main frequency by BP neural network[J].Chinese Journal of Engineering Geophysics,2008,5(2):222-226.
- [7]文建华,李新平,张文成,等.复合遗传算法在爆破震动测试参数确定中的研究[J].岩土力学,2005,26(1):160-162.WEN Jian-hua,LI Xin-ping,ZHANG Wen-cheng,et al.A study of parameter inversion of blasting vibration based on compositely genetic algorithm[J].Rock and Soil Mechanic,2005,26(1):160-162.
- [8]史秀志,董凯程,邱贤阳,等.基于支持向量机回归爆破振动速度预测分析[J].工程爆破,2009,28(7):28-30.SHI Xiu-zhi,DONG Kai-cheng,QIU Xian-yang,et al.Analysis of the ppv prediction of blasting vibration based on support vector machine regression[J].Engineering Blasting,2009,28(7):28-30.
- [9]杨年华,张乐.爆破振动波叠加数值预测方法[J].爆炸与冲击,2012,32(1):84-91.YANG Nian-hua,ZHANG Le.Blasting vibration waveform prediction method based on superposition principle[J].Explosion and Shock Waves,2012,32(1):84-91.
- 李顺波
- 杨仁树
- 杨军
LI Shun-bo- YANG Ren-shu
- YANG Jun
- School of Mechanic & Civil Engineering
- China University of Mining & Technology(Beijing)
- State Key Laboratory of Explosion Science and Technology
- Beijing Institute of Technology
- 李顺波
- 杨仁树
- 杨军
LI Shun-bo- YANG Ren-shu
- YANG Jun
- School of Mechanic & Civil Engineering
- China University of Mining & Technology(Beijing)
- State Key Laboratory of Explosion Science and Technology
- Beijing Institute of Technology