基于改进型SHPB的混凝土动力冲击研究Research on dynamic impact of concrete based on improved SHPB
黄镇苹,乔兰,周明,李庆文,杨建明
HUANG Zhen-ping,QIAO Lan,ZHOU Ming,LI Qing-wen,YANG Jian-ming
摘要(Abstract):
混凝土作为一种重要的建筑材料,其抗冲击性能关乎核电站、大坝、机库等重要结构设施的安全稳定。在动力侵彻过程中,混凝土材料内部赋存大量随机分布的微孔隙、裂隙等被激活、扩展,诱使混凝土发生宏观破坏,研究混凝土材料破坏过程中的动态破碎机理及能量消耗可直观反映材料的防护性能。笔者提出了一种基于弹体侵彻理论的改进型分离式霍普金森压杆(SHPB)动载冲击试验方法,在入射杆端部设计安装锥度为120°的圆锥形冲头,对常规混凝土、RGC(橡胶混凝土)和SFRC(钢纤维混凝土)进行动力冲击研究。通过分析改进型SHPB系统上应力波透反射效应,获得含不同掺合料混凝土试块的宏观破坏形态、破碎产物粒径分布规律和能量耗散规律。试验结果表明:RGC试块和常规混凝土破坏模式相似,宏观破裂成几个大块度试块,而SRFC在钢纤维“桥连”作用下,呈“微裂而不散,裂而不断”的破坏模式;在相同子弹冲击速度下,试块块度粒径SRFC最大、RGC次之、常规混凝土最小,表现出抗破碎能力:SRFC>RGC>常规混凝土;随入射能量的增加,材料破碎能耗均呈线性增加,其中SFRC增长分别是RGC、常规混凝土的1.074、1.49倍。
As an important building material, concrete's impact resistance is related to the safety and stability of important structural facilities such as nuclear power plants, dams, and hangars. In the process of dynamic penetration, a large number of randomly distributed micropores, cracks, etc. are activated and expanded in the concrete material, which induces the macroscopic damage of the concrete. The study of the dynamic crushing mechanism and energy consumption during the failure process of the concrete material can directly reflect the material. The protective performance.An improved split Hopkinson pressure bar(SHPB) dynamic impact test method based on the theory of projectile penetration is proposed. A conical punch with a taper of 120° is designed and installed at the end of the incident bar to conduct dynamic impact research on conventional concrete, RGC(rubber concrete) and SFRC(steel fiber concrete).By analyzing the transmission and reflection effects of stress waves on the improved SHPB system, the macroscopic failure morphology, particle size distribution and energy dissipation of concrete test blocks with different admixtures were obtained. Test results: The failure mode of the RGC test block is similar to that of conventional concrete, macroscopically broken into several large-scale test blocks, while the SRFC under the action of the steel fiber "bridging" shows "micro-cracking but not disintegrating, but continuous cracking." Under the same bullet impact velocity, the block size of SRFC is the largest, RGC is the second, and conventional concrete is the smallest, showing the resistance to crushing: SRFC>RGC>conventional concrete; With the increase of energy, the energy consumption of material crushing increased linearly, and the increase of SFRC was 1.074 times and 1.49 times that of RGC and conventional concrete, respectively.
关键词(KeyWords):
改进型SHPB;混凝土;动载冲击;破碎能耗
improved SHPB;concrete;dynamic impact;crushing energy consumption
基金项目(Foundation): 国家自然科学基金面上资助项目(52274107);; 中央高校基本科研业务费专项资金资助项目(FRF-TP-19-021A3);; 北京科技大学青年教师学科交叉基金资助项目(FRF-IDRY-19-002)
作者(Author):
黄镇苹,乔兰,周明,李庆文,杨建明
HUANG Zhen-ping,QIAO Lan,ZHOU Ming,LI Qing-wen,YANG Jian-ming
DOI: 10.19931/j.EB.20210197
参考文献(References):
- [1] 江见鲸,冯乃谦.混凝土力学[M].北京:中国铁道出版社,1991.JIANG J J,FENG N Q.Concrete mechanics[M].Beijing:China Railway Publishing House,1991.
- [2] 郑全平,周早生,钱七虎,等.防护结构中的震塌问题[J].岩石力学与工程学报,2003,22(8):1 393-1 398.ZHENG Q P,ZHOU Z S,QIAN Q H,et al.Spallation in protective structures[J].Chinese Journal of Rock Mechanics and Engineering.2003,22(8):1 393-1 398.
- [3] FLORES-JOHNSON E A,LI Q M.Structural effects on compressive strength enhancement of concrete-like materials in a split Hopkinson pressure bar test[J].International Journal of Impact Engineering,2017:109.
- [4] GROTE D L,PARK S W,ZHOU M.Dynamic behavior of concrete at high strain rates and pressures:I.experimental characterization[J].International Journal of Impact Engineering,2001,25(9):869-886.
- [5] 王怀亮,闻伟.碾压混凝土单轴动态力学性能研究[J].水力发电学报,2011,30(4):155-160,167.WANG H L,WEN W.Dynamic mechanical properties of RCC under uniaxial stress[J].Journal of Hydroelectric Engineering,2011,30(4):155-160,167.
- [6] KOLSKY H.An investigation of the mechanical properties of materials at very high rates of loading[J].Proceedings of the Physical Society B,1949,62(11):676.
- [7] JANKOWIAK T,RUSINEK A,VOYIADJIS G Z.Modeling and design of SHPB to characterize brittle materials under compression for high strain rates[J].Materials,2020,13(9):1-18.
- [8] REN L,YU X,HE Y,et al.Numerical investigation of lateral inertia effect in dynamic impact testing of UHPC using a Split-Hopkinson pressure bar[J].Construction and Building Materials,2020,246:118483.
- [9] BAI Y L,YAN Z W,JIA J F,et al.Dynamic compressive behavior of concrete confined with unidirectional natural flax FRP based on SHPB tests –Science Direct[J].Composite Structures,2020.
- [10] CHEN P,CHEN A X,LI X.Dynamic compressive behavior of 10-year-old concrete cores after exposure to high temperatures[J].Journal of Materials in Civil Engineering,2020,32(5):04020076.
- [11] ZHOU Y X,XIA K,LI X B,et al.Suggested methods for determining the dynamic strength parameters and mode-I fracture toughness of rock materials[J].International Journal of Rock Mechanics and Mining Sciences,2012,49(1):105-112.
- [12] 杨阳,王建国,方士正,等.霍普金森撞击杆对入射波形影响的数值模拟[J].工程爆破,2020,26(1):7-14,35.YANG Y,WANG J G,FANG S Z,et al.Numerical simulation on the influence of incident wave shape by Hopkinson Striker Bar[J].Engineering Blasting,2020,26(1):7-14,35.
- [13] 李祥龙,袁芝斌,王建国,等.动载下矿岩-充填体能量传递规律及破坏特性[J].工程爆破,2021,27(3):1-8,34.LI X L,YUAN Z B,WANG J G,et al.Energy transfer characteristics of ore rock-filling body under dynamic load[J].Engineering Blasting,2021,27(3):1-8,34.
- [14] 葛涛,潘越峰,谭可可,等.活性粉末混凝土抗冲击性能研究[J].岩石力学与工程学报,2007,26(S1):3 553-3 557.GE T,PAN Y F,TAN K K,et al.Study on resistance of reactive powder concrete to impact[J].Chinese Journal of Rock Mechanics and Engineering,2007,26(S1):3 553-3 557.
- [15] 谢磊,李庆华,徐世烺.冲击荷载下免蒸养活性粉末混凝土分形特征研究[J].工程力学,2021,38(3):169-180.XIE L,LI Q H,XU S L.Experimental study on fractal characteristics of steam free reactive powder concrete under impact load[J].Engineering Mechanics,2021,38(3):169-180.
- [16] 丁庆军,李进辉,耿雪飞,等.橡胶颗粒掺杂提高超高性能混凝土的抗冲磨性能及其机理[J].硅酸盐学报,2020,48(10):1 636-1 643.DING Q J,LI J H,GENG X F,et al.Mechanism of enhancing anti-abrasion performance of ultrahigh-performance concrete via rubber particles[J].Journal of The Chinese Ceramic Society,2020,48(10):1 636-1 643.
- [17] 方秦,洪建,张锦华,等.混凝土类材料SHPB实验若干问题探讨[J].工程力学,2014,31(5):1-14,26.FANG Q,HONG J,ZHANG J H,et al.Issues of SHPB test on concrete-like material[J].Engineering Mechanics,2014,31(5):1-14,26.
- [18] 郑丹,王海龙,李庆斌.惯性与黏性对动载下混凝土强度的作用机理[J].水力发电学报,2018,37(8):85-93.ZHENG D,WANG H L,LI Q B.Mechanism of inertia and viscosity effects on concrete strength under dynamic loading[J].Journal of Hydroelectric Engineering,2018,37(8):85-93.
- [19] 郑丹,梁云涛,李鑫鑫.黏性对动力荷载下混凝土强度的影响机理[J].水力发电学报,2021,40(6):152-159.ZHENG D,LIANG Y T,LI X X.The influence mechanism of viscosity to concrete strength under dynamic loading[J].Journal of Hydroelectric Engineering,2021,40(6):152-159.
- [20] ZHANG Z X,KOU S Q,JIANG L G,et al.Effects of loading rate on rock fracture:fracture characteristics and energy partitioning[J].2000,37(5):745-762.
- [21] GONG F Q,JIA HANG Y,ZHANG Z X,et al.Energy dissipation and particle size distribution of granite under different incident energies in SHPB compression tests[J].Shock and Vibration,2020(10):1-14.
- [22] GONG F Q,JIAN H,ARMAUD P.Energy dissipation characteristic of red sandstone in the dynamic braziliandisc test with SHPB setup[J].Advances in Civil Engineering,2020(5):1-10.
- [23] 张立杰.弹丸侵彻混凝土靶的数值模拟研究[D].太原:中北大学,2012.ZHANG L J.Numerical simulation of projectile penetrating concrete target[D].Taiyuan:North University of China,2012.
- [24] 王明洋,谭可可,吴华杰,等.钻地弹侵彻岩石深度计算新原理与方法[J].岩石力学与工程学报,2009,28(9):1 863-1 869.WANG M Y,TAN K K,WU H J,et al.New method of calculation of projectile penetration into rock[J].Chinese Journal of Rock Mechanics and Engineering,2009,28(9):1 863-1 869.
- [25] 李淼,乔兰,李庆文.高应变率下预制单节理岩石SHPB劈裂试验能量耗散分析[J].岩土工程学报,2017,39(7):1 336-1 343.LI M,QIAO L,LI Q W.Energy dissipation of rock specimens under high strain rate with single joint in SHPB tensile tests[J].Chinese Journal of Geotechnical Engineering,2017,39(7):1 336-1 343.
- [26] 邓勇军,陈小伟,钟卫洲,等.弹体正侵彻钢筋混凝土靶的试验及数值模拟研究[J].爆炸与冲击,2020,40(2):26-36.DENG Y J,CHEN X W,ZHONG W Z,et al.Experimental and numerical study on normal penetration of a projectile into a reinforced concrete target[J].Explosionand Shock Waves,2020,40(2):26-36.
- [27] 焦楚杰,孙伟,高培正.钢纤维超高强混凝土动态力学性能[J].工程力学,2006(8):86-89,85.JIAO C J,SUN W,GAO P Z.Dynamic mechanical properties of steel-fiber reinforced ultra high strength concrete[J].Engineering Mechanics,2006(8):86-89,85.
- [28] 赵昕,徐世烺,李庆华.高温后超高韧性水泥基复合材料冲击破碎分形特征分析[J].土木工程学报,2019,52(2):44-55.ZHAO X,XU S L,LI Q H.Fractal characteristics of fire-damaged ultra high toughness cementitious composite after impact loading[J].China Civil Engineering Journal,2019,52(2):44-55.
- [29] 刘石,许金余,白二雷,等.基于分形理论的岩石冲击破坏研究[J].振动与冲击,2013,32(5):163-166.LIU S,XU J Y,BAI E L,et al.Research on impact fracture of rock based on fractal theory[J].Journal of Vibration and Shock,2013,32(5):163-166.
- [30] 李占金,郝家旺,甘德清,等.动载作用下磁铁矿石破坏特性实验研究[J].振动与冲击,2019,38(12):231-238,245.LI Z J,HAO J W,GAN D Q,et al.An experimental study on the failure characteristics of magnetite ore based on dynamic load[J].Journal of Vibration and Shock,2019,38(12):231-238,245.