PCA-BP算法在地面爆破振动中的应用Application of PCA-BP algorithm in ground blasting vibration
赵红梦;姜志侠;
ZHAO Hong-meng;JIANG Zhi-xia;School of Science, Changchun University of Science and Technology;
摘要(Abstract):
为了更加准确地预测地面爆破的质点峰值振动速度,提出应用一种PCA-BP算法,该算法首先利用主成分分析对爆心距、高程差、总药量、炮孔深度、单段最大药量等地面爆破振动影响因素进行研究,然后结合BP神经网络算法对其爆破质点峰值振动速度进行预测。结果显示:利用PCA-BP算法的预测结果更接近工程实测值,平均相对误差为7.748%,远小于用传统萨道夫斯基经验公式进行预测的平均相对误差32.654%,说明将PCA-BP算法应用到爆破振动工作中是比较可行的,对评估地面振动危害有一定的指导意义。
In order to more accurately predict the peak particle velocity of ground blasting vibration, a PCA-BP algorithm was proposed; The algorithm firstly uses principal component analysis to analyze the impact factors of ground blasting vibration,such as blast center distance, elevation difference, total charge, blasthole depth and the maximum charge of the segment, and then combined with the BP neural network algorithm to predict the peak particle velocity of the blasting particles.The results show that the prediction result byusing the PCA-BP algorithm is closer to the measured value of the project,and the average relative error is 7.748%, which is less than the average relative error of 32.654% predicted by the traditional Sadovsky empirical formula. It shows that it is more feasible to apply the PCA-BP algorithm to blasting vibration work, and there are certain guiding significance for evaluating the ground vibration hazards.
关键词(KeyWords):
PCA-BP算法;BP神经网络;振速预测;质点峰值振动速度;主成分分析
PCA-BP algorithm;BP neural network;vibration velocity prediction;peak particle velocity;principal component analysis
基金项目(Foundation): 国家自然科学基金资助项目(51378076)
作者(Author):
赵红梦;姜志侠;
ZHAO Hong-meng;JIANG Zhi-xia;School of Science, Changchun University of Science and Technology;
Email:
DOI:
参考文献(References):
- [1] AZIMI Y.Prediction of blast induced ground vibration (BIGV) of quarry mining using hybrid genetic algorithm optimized artificial neural network[J].Measurement,2019(147):1-17.
- [2] 王斌,张迅,盛津芳,等.优化的GEP算法在爆破振动预测中的应用[J].计算机工程与应用,2016,52(22):212-217.WANG B,ZHANG X,SHENG J F,et al.Application of optimized GEP algorithm in blasting vibration prediction[J].Computer Engineering and Applications,2016,52(22):212-217.
- [3] 于洋,张振文,于孔超.基于人工神经网络的大海则煤矿单井矿井水定量预测[J].科技创新导报,2009(19):100-101.YU Y,ZHANG Z W,YU K C.Quantitative prediction of mine water in a single well in Dahaize Coal Mine based on artificial neural network [J].Technology Innovation Guide,2009(19):100-101.
- [4] 郭连军,王智静,牛成俊,等.爆破优化的神经网络模型[J].工程爆破,1996,2(2):11-15.GUO L G,WANG Z J,NIU C J,et al.Neural network model for blasting optimization [J].Engineering Blasting,1996,2(2):11-15.
- [5] 施建俊,李庆亚,张琪,等.基于MATLAB和BP神经网络的爆破振动预测系统[J].爆炸与冲击,2017,37(6):1 087-1 092.SHI J J,LI Q Y,ZHANG Q,et al.Blasting vibration prediction system based on MATLAB and BP neural network [J].Explosion and Shock,2017,37 (6):1 087-1 092.
- [6] MENG L B,LI T B,WANG Z Y.A model for predicting rock burst by MATLAB neural network toolbox[J].The Chinese Journal of Geological Hazard and Control,2003,14(4):81-85.
- [7] 张艺峰,姚道平,谢志招.基于BP神经网络的爆破振动峰值及主频预测[J].工程物理学报,2008,5(2):222-226.ZHANG Y F,YAO D P,XIE Z Z.Prediction of blasting vibration peak and main frequency based on BP neural network [J].Journal of Engineering Physics,2008,5(2):222-226.
- [8] LI S.A tutorial on principal components analysis[J].Information Fusion,2002,51(3):219-226.
- [9] 胡航英.主成分分析在碳排放中的应用[J].纳税,2019,13(20):295-296.HU H Y.The application of principal component analysis in carbon emissions [J].Tax Payment,2019,13 (20):295-296.
- [10] 姚菲.制造业备件库存管理优化体系研究与应用[D].北京:北京邮电大学,2014.YAO F.Research and application of manufacturing spare parts inventory management optimization system [D].Beijing:Beijing University of Posts and Telecommunications,2014.
- [11] 包子阳,余继周,杨杉.智能优化算法及其MATLAB实例[M].北京:电子工业出版社,2016.BAO Z Y,YU J Z,YANG S.Intelligent optimization algorithm and MATLAB example [M].Beijing:Electronic Industry Press,2016.
- [12] 谷琼,蔡之华,朱莉,等.一种基于PCA的GEP算法及在采煤工作面瓦斯涌出量预测中的应用[J].应用基础与工程科学学报,2007(4):569-577.GU Q,CAI Z,ZHU L,et al.A PCA-based GEP algorithm and its application in the prediction of gas emission from coal face [J].Journal of Applied Basic and Engineering Sciences,2007(4) :569-577.
- [13] 李新,曹鹏飞.基于BP神经网络与经验公式法的地下洞室爆破振速预测及对比研究[J].甘肃水利水电技术,2016,52(2):12-15.LI X,CAO P F.Prediction and comparison of blasting vibration velocity of underground caverns based on BP neural network and empirical formula method [J] .Gansu Water Resources and Hydropower Engineering,2016,52 (2):12-15.
- [14] 陈翰新,吴明生.大跨度隧道施工爆破地震波监测及减震措施[J].交通科技与经济,2010,12(4):96-99.CHEN H X,WU M S.Blasting seismic wave monitoring and seismic reduction measures for large-span tunnel construction [J] .Transportation Technology and Economy,2010,12(4):96-99.
- [15] 张吉勇,付玉华,周俊.基于随机森林算法的爆破振速预测研究[J].化工矿物与加工,2018,47(4):34-37.ZHANG J Y,FU Y H,ZHOU J.Research on prediction of blasting vibration speed based on random forest algorithm [J] .Chemical Minerals and Processing Technology,2018,47(4):34-37.
- PCA-BP算法
- BP神经网络
- 振速预测
- 质点峰值振动速度
- 主成分分析
PCA-BP algorithm - BP neural network
- vibration velocity prediction
- peak particle velocity
- principal component analysis